MODEL EC1x
ENVIRONMENTAL CHAMBER
USER AND REPAIR MANUAL

Covers EC1x and EC1xHA Environmental Chambers
which incorporate the TC10 controller

The information in this document has been carefully checked and is believed to be entirely reliable. No responsibility, however, is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the product described any license under the patent rights of SUN ELECTRONIC SYSTEMS, INC., or others.

Sun Systems strives constantly to improve the quality and performance of all of its products, in design, construction, and cost. As a consequence, SUN ELECTRONIC SYSTEMS, INC. reserves the right to change specifications, or other data contained herein, without notice.

Any software, firmware, designs, and any other programs in Sun Systems’ products remain the sole property of SUN ELECTRONIC SYSTEMS, INC. and may not be copied by any means. Purchase of said product constitutes agreement that software rights remain to the benefit of SUN ELECTRONIC SYSTEMS, INC. Upon purchase, Sun Systems grants perpetual license for use by the customer.

REV G
0517

Copyright 1991 by SUN ELECTRONIC SYSTEMS, INC.
INFORMATION ABOUT YOUR CHAMBER

MODEL ___________________ SERIAL NUMBER__________________

OPTIONS INSTALLED:

COOLANT TYPE ______________ V_{ac}_________ V_{dc}_________ PRESSURE _________ psi

COOLING OPTIONS INSTALLED__

__

OTHER OPTIONS INSTALLED:___

POWER ________________ watts

VOLTAGE _______________ V_{ac} , single phase ________ wire line cord.

PROBE TYPES: chamber _________ user _________

DEFAULT PID HEAT:
P= ________________
I= ________________
D= ________________

DEFAULT PID COOL:
P= ________________
I= ________________
D= ________________

FAIL-SAFE TYPE: Mechanical ____________ Electronic _____________

TESTED BY: _____________________________ DATE: ______________________

Pg 2

EC1x ver. 0517
Contents

SECTION 1. GENERAL INFORMATION

INTRODUCTION .. 9
LIMITED WARRANTY INFORMATION .. 9
EC1X DESCRIPTION .. 10
OPERATIONAL MODES ... 10
USER PROBE ... 10
LOCAL CONTROL PANEL OPERATION ... 10
REMOTE GPIB OR RS232/422 OPERATION ... 11
DATA ACQUISITION AND CONTROL INTERFACES .. 11
EC1X COMPONENT IDENTIFICATION ... 11
CHAMBER FRONT VIEW .. 12
CHAMBER REAR VIEW OF EC1X with Mechanical Fail-Safe ... 13
CHAMBER REAR VIEW OF EC1XHA-LM ... 13
CHAMBER REAR VIEW OF EC1XHA with Mechanical Fail-Safe 14
CHAMBER REAR VIEW OF EC1.3W-LM ... 15
CHAMBER REAR VIEW OF EC1X-LM3 ... 16
CONTROLLER SECTION SEPARATED OF EC1X & EC1XHA (REV G) 17
CONTROLLER SECTION SEPARATED OF EC1.3W (REV E) ... 18
CONTROLLER SECTION MAIN BOARD COVER REMOVED (REV G) 19
CHAMBER WITH AIR BAFFLE REMOVED ... 20
HEATER ELEMENT TABLE ... 20
CHAMBER INTERNAL REAR VIEW ... 21
CHAMBER INTERNAL REAR VIEW OF EC1.3W ... 22
NITROGEN GAS PURGE WITH NEEDLE VALVE ... 23
FRONT PANEL ... 24
REAR PANEL ... 25

SECTION 2. RECEIVING, SAFETY AND INSTALLATION .. 27

INITIAL INSPECTION AND UNPACKING .. 27
LOST OR DAMAGED EQUIPMENT ... 27
SAFETY CONSIDERATIONS ... 27
LIQUID CARBON DIOXIDE DELIVERY SYSTEMS .. 28
LCO₂ INSTALLATION PROCEDURE .. 28
LCO₂ 3-TANK AUTO SWITCH .. 29
REMOTE CONTROL OF THE SET INTERRUPT MENU (SINT).................................48
REMOTE INTERRUPT CHARACTERS..48
PROBE CALIBRATION MENU ...49
CAL TO A STANDARD COMMANDS ..50
RESTORING DEFAULT CALIBRATION VALUES ..51

SECTION 4. INPUT/OUTPUT INTERFACES ..53
COMMUNICATION INTERFACES ..53
FRONT PANEL INTERFACE ..53
GPIB (IEEE-488) PARALLEL INTERFACE ..53
RS232/422 SERIAL INTERFACE ...53
RS232/422 SERIAL INTERFACE (DB25) ..54
AUXILIARY I/O INTERFACES ..54
BIT I/O INTERFACE ..54
BIT I/O INTERFACE (26 PIN IDC) ..54
Auxiliary Output 2 and 4 ..55
BIT I/O PORT LOGIC ..56
I/O BOARD LOGIC ...57
DIGITAL PARALLEL USER I/O INTERFACE ...58
USER PARALLEL I/O INTERFACE (26 PIN IDC) ...58
USER PARALLEL I/O COMMANDS ...58
USER BUS SCHEMATIC ..59
TIMING DIAGRAM ...60
SAMPLE USER CIRCUIT ..61
MATRIX SYSTEM CONTROLLED BY DIGITAL PARALLEL USER I/O INTERFACE62
MATRIX FUNCTIONAL BLOCK DIAGRAM ...62
MATRIX USER INTERFACE ..63
ANALOG I/O INTERFACE ..64
ANALOG I/O INTERFACE (J2,DB15) ...64
ANALOG I/O INTERFACE I/O COMMANDS ..64
ANALOG PORT SCHEMATIC ..65
PROBE INTERFACE with connection diagram ...66
 Chamber Probe (loc. PC1) and User Probe (loc. PU1) Connector Wiring Diagram, Rev G Ver. 10.xx ... 66
 Ch#3 / Ch#4 Probe (loc. PX1) Connector Wiring Diagram, Rev G Ver 10.xx 66
 Chamber Probe and User Probe Connector Wiring Diagram (Revisions Prior to Rev G, Ver. 10.xx) 67
PROCESS CONTROL OUTPUTS ..67

SECTION 5. DETAILED COMMAND DESCRIPTIONS ...69
AB ... 69
BKPNT ... 70
BKPNTC .. 71
BKPNT? .. 71
C ... 72
C3? & C4? ... 72
CALAx ... 73
CALBx ... 73
CALC .. 74
CALC1 ... 74
CALC2 ... 75
CHAM? ... 75
COFF .. 76
CON ... 76
CSET .. 77
DELL ... 77
DELP .. 78
DEVL .. 78
EDIT ... 79
END ... 80
FOR/NEXT .. 81
GOSUB ... 82
HOFF .. 82
HON ... 83
I VARIABLES ... 83
IN .. 84
LIST ... 84
LLO ... 85
LTL ... 85
M .. 86
OFF ... 86
ON ... 87
OUT ... 88
PIDA ... 91
PIDC ... 92
PIDH ... 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Wiring Schematics, V_{dc} Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>120 V_{ac} 3 Wire EC1A, EC10, EC12</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC1A, EC10, EC12</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC11A, EC13</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC11</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC13HA, EC15HA, EC16, EC16HA</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 4 Wire EC1A, EC10, EC12</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 4 Wire EC11A, EC11, EC13</td>
</tr>
<tr>
<td>11</td>
<td>120 V_{ac} 3 Wire EC1A-LM, EC10-LM, EC12-LM</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC1A-LM, EC10-LM, EC12-LM</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC11-LM</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 4 Wire EC1A-LM, EC10-LM, EC12-LM</td>
</tr>
<tr>
<td></td>
<td>120 V_{ac} 3 Wire EC1A-LM-EMR, EC10-LM-EMR, EC12-LM-EMR</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC1A-LM-EMR, EC10-LM-EMR, EC12-LM-EMR</td>
</tr>
<tr>
<td>12</td>
<td>110 V_{ac} 3 Wire EC10-LM3, EC1A-LM3</td>
</tr>
<tr>
<td></td>
<td>110 V_{ac} 3 Wire EC12-LM3</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC1A-LM3, EC10-LM3, EC12-LM3</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC11-LM3</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC11A-LM3</td>
</tr>
<tr>
<td></td>
<td>220 V_{ac} 3 Wire EC13-LM3</td>
</tr>
<tr>
<td>13</td>
<td>REPLACEMENT PARTS</td>
</tr>
<tr>
<td>14</td>
<td>ERROR MESSAGES</td>
</tr>
</tbody>
</table>
SECTION 1. GENERAL INFORMATION

INTRODUCTION

Thank you for your purchase of the EC1x Environmental Chamber!! Your new chamber was manufactured under stringent quality control procedures to ensure trouble free operation for many years of service. If you should encounter difficulties with the use or operation of your chamber, contact Sun Systems' “Customer Service Department” between the hours of 8:30AM and 5:00PM EST.

As with all Sun Systems' products, we would appreciate any comments, suggestions or criticisms that you may have or develop regarding your evaluation of this equipment. Please address your comments to:

Product Service Manager
Sun Electronic Systems, Inc.
1845 Shepard Drive
Titusville, FL 32780
Tel: (321) 383-9400
Fax: (321) 383-9412
Website: www.sunelectronics.com
Email: sales@sunelectronics.com

LIMITED WARRANTY INFORMATION

SUN ELECTRONIC SYSTEMS, INC. warrants this product to the original purchaser to be free from defects in material and workmanship and to operate within applicable specifications for a period of TWO (2) Years from the date of shipment, provided it is used under normal operating conditions. This warranty does not apply to sealed assemblies which have been opened, or to any item which has been repaired or altered without SUN SYSTEMS authorization.

Risk of loss or damage to the product shall pass to the customer upon delivery, by SUN SYSTEMS, to the carrier at SUN SYSTEMS premises.

We will repair or, at our option, replace at no charge any of our products which in SUN SYSTEMS judgment, are found to be defective under the terms of this warranty. Except for such repair or replacement, SUN SYSTEMS will not be liable for any loss or damage to persons or property caused either directly or indirectly by use of this product or for any incidental damages or for any consequential damages. Before using, purchaser shall determine the suitability of this product via this document for his intended use and purchaser assumes all risk and liability whatsoever in connection therewith. No statement or recommendation not contained herein shall have any force or effect unless in agreement signed by an officer of SUN ELECTRONIC SYSTEMS, INC.
EC1X DESCRIPTION

The Model EC1x subjects objects placed in the chamber area to either heated or cooled air which circulates from the intake in the rear of the test chamber area, up and across the roof of the test chamber, inside a baffle, and vertically downwards back into the test chamber area. Inside the test chamber area baffle, resistance heaters heat the circulating air and injected carbon dioxide, or optionally, liquid nitrogen, cools the air. Using Pulse Width Modulation techniques, which either turns on or off the heaters and/or coolant supply valve, the controller in the Model EC1x maintains the desired temperature or rate of change of temperature in the chamber test area. To accurately control the process of maintaining or changing temperatures within the test chamber area, the controller uses Proportional, Integral and Derivative (PID) control techniques. If necessary, the user may tailor the characteristics of the PID algorithms independently for both heat and cool to the objects placed in the test chamber area. The Model EC1x is instructed to control temperature either by issuing single control commands or by writing and executing local control programs which may be stored in the Model EC1x, or by a combination thereof. Single commands and programs may be issued from either the local control panel located on the front of the EC1x or remotely from either the RS232/422 serial interface or the GPIB interface.

OPERATIONAL MODES

Temperature testing usually involves testing an object at one or several different temperatures. In the case of more than one temperature, the rate of change from one temperature to another and the time waiting at a particular temperature are considerations. In the single temperature mode, the Model EC1x accepts single commands defining an individual temperature segment containing rate of change from the present temperature to the final temperature, wait time at final temperature and final temperature set point information. At the end of a wait period, notification is given to the source of the command. If multiple temperature segments are to be performed by the Model EC1x automatically, the Model EC1x can be programmed by entering an EDIT mode and the program can be executed by entering a RUN mode. The Model EC1x stores up to 10 programs into battery backed memory. The number of temperature segments resident in each program is only limited by the Model EC1x’s controller internal memory space. Programs can call other programs as subroutines.

The Model EC1x contains setup modes which are menu driven on the control panel. The CAL mode permits selection of temperature scale (C, F, K), probe type and probe calibration for both the chamber and USER probes. The SDEF mode permits modification of the Model EC1x default parameters such as GPIB address, D/A output configurations, alarm function and loudness, etc. The SINT mode permits modification of the Model EC1x interrupt configuration parameters such as audible alarm function, GPIB SRQ functions, etc.

USER PROBE

The USER probe is located within the test chamber area for direct measurement capability on the unit under test. The USER probe is electrically isolated from other chamber electronics permitting the probe to be directly attached to devices containing voltages up to 200 volts DC. In the CAL menu, the probe type for the USER probe can be selected to be an RTD, J or K Thermocouple. The unit is shipped with a type K thermocouple. The USER probe value is normally displayed on the control panel, line 2, and may be read remotely from a host computer.

LOCAL CONTROL PANEL OPERATION

The Model EC1x can operate in a stand-alone configuration through the use of its control panel located on the front of the unit. Most keys perform one primary and two alternate functions. The primary function of any key is indicated by the black colored character below the key. The two alternate functions are indicated by the red and green character above the key. To select the primary
function below the key, press only that key. To select an alternate function, for example, printed in red above the key, first press the red shift key, then press the function key, then press the blue ENTER key. The LED indicators provide positive indication that the alternate function is enabled. The blue ENTER key is required at the end of each command line to execute the command line and then is ready for the next line. The command entry may be edited using the green backup or cancel keys prior to pressing the blue ENTER key.

REMOTE GPIB OR RS232/422 OPERATION
The Model EC1x can operate remotely from a host computer over an IEEE-488 standard GPIB interface bus or over an RS-232 or RS-422 serial interface. Individual commands may be sent to the Model EC1x or programs may be downloaded and executed further relieving the host computer. A carriage return line feed is sent after an RS port interrupt character to simplify checking for interrupt by the host. To insure compatibility with Sun Systems Model TC01 temperature controller and the Model EC0x environmental chamber, the Model EC1x accepts the most commonly used TC01/EC0x commands. Section 3 has a complete list of single commands and program instructions for the Model EC1x.

DATA ACQUISITION AND CONTROL INTERFACES
The Model EC1x provides an expanded I/O interface to facilitate special test fixtures and accessories provided by Sun Systems or for use by you for your custom test fixture requirements. Analog input and output channels, auxiliary relay control and USER digital parallel port are available to you in implementing your test system design or for interfacing with other Sun Systems test accessories. Model EC1x commands permit read and write capability specifically to each device interface. Section 4 has a complete overview of the device interfaces and commands.

EC1X COMPONENT IDENTIFICATION
Take a moment to become familiar with the major components of your environmental chamber by reviewing the following figures. Refer to these figures when performing adjustments, routine maintenance or removal and replacement procedures.
CHAMBER FRONT VIEW
CHAMBER REAR VIEW OF EC1XHA with Mechanical Fail-Safe
CHAMBER REAR VIEW OF EC1.3W-LM
CHAMBER REAR VIEW OF EC1X-LM3
CONTROLLER SECTION SEPARATED OF EC1X & EC1XHA (REV G)
CONTROLLER SECTION SEPARATED OF EC1.3W (REV E)
CONTROLLER SECTION MAIN BOARD COVER REMOVED (REV G)
HEATER ELEMENT TABLE
The following is a guide to the number and type of heater elements used in each chamber. Chambers using both wattages, the upper elements on each side are 800w and lower are 600w.

<table>
<thead>
<tr>
<th>Model #</th>
<th>PN# 980201 (600 watt)</th>
<th>PN# 980205 (800 watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1A, EC10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC11A</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>EC1.3W</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC12</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EC13</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EC13HA, EC15HA</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EC16, EC16HA</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
NITROGEN GAS PURGE WITH NEEDLE VALVE
FRONT PANEL
REAR PANEL

RS232
RS422

SPI/BT

GPIB

IEEE 488

ANALOG

USER

REAR PANEL
SECTION 2. RECEIVING, SAFETY AND INSTALLATION

INITIAL INSPECTION AND UNPACKING
Inspect the shipping container for obvious damage. If the shipping container is damaged, then a written note on the bill of lading describing the damage should be made while the delivery person is still on the premises. Unpack the EC1x and save all carton and cushioning material in case the unit needs to be returned. Verify the contents of the carton matches that of the items listed on the packing slip.

LOST OR DAMAGED EQUIPMENT
If you determine that the goods described on the packing slip are lost or damaged, first notify the transportation company to obtain the correct procedure for returning merchandise for repair or replacement. Then call Sun Systems for a return authorization number so that we may best handle the merchandise when it is returned.

SAFETY CONSIDERATIONS
Please take a moment to read the following safety precautions. If for any reason one does not fully understand the meaning of the cautions, please contact Sun Systems’ customer service before proceeding.

CAUTION - Set the fail-safe as per setting the fail-safe section.

CAUTION - Lifting of the chamber should be done by two people to avoid injury.

CAUTION - Disconnect all electrical power sources before attempting any type of access or service to the interior of the chamber to prevent electrical shock. Turn off expectorant supplies and disconnect expectorant supply hose before attempting any type of service to the interior of the chamber.

CAUTION - Always operate the chamber with the case grounded to earth ground. Verify that the power outlet to be used has an earth ground and meets the user’s local electrical codes.

CAUTION - Verify that the source of electrical power is compatible with the manufactured configuration of the chamber indicated on the rear of the unit.

CAUTION - Do not mount on or around flammable material.

CAUTION - Avoid personal contact with the interior portions of the test chamber area to prevent burns from heat or cold.

CAUTION - Use personal protective equipment such as gloves, goggles, face shields, etc., when working with or in an environment containing liquid carbon dioxide or liquid nitrogen.

CAUTION - Avoid any personal contact of the skin or eyes with liquid carbon dioxide or liquid nitrogen or supply lines and vessels carrying these liquids. Exposure to these liquids or the vessels which carry them can cause frostbite.

CAUTION - Operate the chamber in an environment with good ventilation to air. If the chamber is to be installed in an enclosed area, connect the chamber exhaust port to outside air. Never use the exhaust port for test access to the internal temperature chamber.

CAUTION - Do not block internal air circulation air inlet port. Reduced airflow may cause heater
element failure.

CAUTION - Always follow the safety precautions supplied by one’s liquid carbon dioxide or liquid nitrogen storage cylinders and vessels vendor.

CAUTION - Verify that the correct type of expectorant source is connected to the chamber before operating the chamber at low temperature. Test the expectorant for cleanliness by discharging a small amount through a clean filter. Inspect for quantities of ice, oil, rust or water for contamination. Contaminated expectorants must not be used.

CAUTION - Do not leave liquid nitrogen trapped in a supply line as high pressures will be developed when the liquid absorbs heat and is transformed from a liquid to a gas. Bleed the supply hose when not in use.

CAUTION - To prevent premature LN\textsubscript{2} coolant valve failure, do not operate the chamber with the COOL enabled without a coolant connected to the chamber and turned on. The coolant flow through the solenoid acts as coolant for the valve. Set auto cool off to yes in SDEF MENU.

CAUTION - When operating the chamber at low temperatures for extended periods of time, operate the chamber at +100°C for an hour to dry any moisture which may accumulate in the fiberglass insulation material surrounding the test area of the chamber.

CAUTION - Avoid oil contamination of the fiberglass insulation material surrounding the test area of the chamber. Liquid oxygen may be formed in the insulation material when operating at low temperature. Liquid oxygen mixed with oil can be explosive.

LIQUID CARBON DIOXIDE DELIVERY SYSTEMS

There are three common delivery systems available with the use of liquid carbon dioxide. They consist of a room temperature 50 pound, 850 PSI type K cylinder, a 350 pound, 300 PSI Dewar’s type vessel and 300 PSI bulk delivery systems. Delivery systems utilizing 300 PSI delivery pressure require low pressure cooling option to be ordered with the chamber. Follow LCO\textsubscript{2} supplier recommendations for the correct methods to store and use expectorant supply.

LCO\textsubscript{2} INSTALLATION PROCEDURE

The EC1x is equipped with a 1/8” SAE 37° flare male fitting. If the chamber was ordered for use with 850 PSI LCO\textsubscript{2} bottles then simply connect the hose supplied with the chamber between the LCO\textsubscript{2} inlet fitting on the back of the chamber, and the type K cylinder. No regulators, etc. are required. The adaptor (tank fitting CGA 320) connected to the hose should fit on the LCO\textsubscript{2} bottle. Turn on the LCO\textsubscript{2} supply and check for leaks.

If the chamber was ordered for use with 300 PSI LCO\textsubscript{2} bottles then simply connect the hose supplied with the chamber between the LCO\textsubscript{2} inlet fitting on the back of the chamber, and the liquid draw. Hoses used with 300 PSI LCO\textsubscript{2} should be thermally insulated since 300 PSI LCO\textsubscript{2} is approximately at 0° C. No regulators, etc. are required. The adaptor (tank fitting CGA 320) connected to the hose should fit on the LCO\textsubscript{2} bottle. Turn on the LCO\textsubscript{2} delivery system and check for leaks.
LCO₂ 3-TANK AUTO SWITCH

The 3-tank LCO₂ automatic switching option is available on the EC1x chambers. When enabled in the SDEF MENU the controller will sense when the cooling rate is low and automatically switch to the next LCO₂ tank. This is a useful feature for users that use bottled LCO₂, 850 psi, for its long storage life without boil off, when performing extended test profiles. (Refer to the TANK and TANK? command in Section 5) Three hoses with adaptors are provided to connect three tanks to the three inlets on the back of the chamber.

LIQUID NITROGEN DELIVERY SYSTEMS

Chambers configured with the Liquid Nitrogen option as the cooling expectorant are able to operate as low as -184°C in temperature. Liquid nitrogen (LN₂) is commonly supplied in either a vessel (also called a Dewar) or a bulk delivery system. Delivery pressure for these systems vary. A bulk delivery system normally runs low pressure (this pressure should not be below 25 psi). Delivery from a vessel is available in low or high pressure. Low pressure is 25psi to 50psi. High pressure is approximately 100psi. Other pressure set ups are available, please contact factory. The pressure specified for the chamber at time of order is recorded on page 2 of this manual and on the I.D. Tag found on the back of the chamber.

LN₂ INSTALLATION PROCEDURE

1. The EC1x is equipped with a 1/2", SAE 45° flare male fitting on the rear of the chamber (tank fitting CGA 295). Connect the user supplied cryogenic supply hose to this fitting. A 1/2" I.D. thermally insulated supply hose should be used for best chamber operation. Sun Electronic Systems offers an optional LN₂ hose.

2. Connect the other end of the cryogenic supply hose to the LN₂ supply.

3. Insure fittings are secure. Turn on the LN₂ supply and check for leaks.

LN₂ 2-TANK AUTO SWITCH

The 2-tank LN₂ automatic switching option is available on the EC1x chambers. When enabled in the SDEF MENU the controller will sense when the cooling rate is low and automatically switch to the next LN₂ tank. This feature is useful when performing extended test profiles. (Refer to the TANK and TANK? command in Section 5)

LN₂ AUTO LINE PURGE

The LN₂ auto-purge option is available on the EC1x chambers. This feature supports the liquid nitrogen automatic hose cool down. When enabled in the SDEF MENU the controller senses low cooling rate and automatically turns on a second nitrogen valve. This second valve injects nitrogen at a fast rate to provide the initial flow of nitrogen that may be necessary to quickly cool the hose that runs between the LN₂ source and the chamber. Answer yes to auto purge SDEF MENU prompt if the auto purge option is installed.

N₂ GAS PURGE

A nitrogen gas purge option is available for EC1x chambers. The purpose of this option is to provide a dry nitrogen environment for the Device Under Test (DUT) during temperature testing. Inherent with expectorant cooled chambers a dry gas condition exists when cooling since LN₂ or LCO₂ is injected into the chamber. To maintain dry conditions during heating, the purge is used.
N₂ GAS PURGE WITH NEEDLE VALVE

The nitrogen gas purge option consists of a flow meter, needle valve, on/off control valve and 6' hookup line. The 6' line is 1/4" OD plastic hose with 1/8" NPT male fitting on both ends. The rear of the chamber has a 1/8" NPT female fitting. The following are instructions for connecting the N₂ gas supply:

1. Connect nitrogen gas supply to input port at back of chamber control section. Maximum pressure, 100psi

2. The following commands are used to turn On and Off the gas flow into chamber. The OUT0 commands may be stored in local programs for automatic gas control.

 OUT0:4,1 turn on gas flow
 OUT0:4,0 turn off gas flow

3. Adjust needle valve for desired flow.

N₂ GAS PURGE (No Needle Valve)

This option provides access to purge N₂ gas into the chamber through a 1/8" NPT nipple located on the back of the chamber.
AMBIENT AIR BLOWER SYSTEM

The EC1xHA chambers incorporate an air blower that blows ambient room air into the chamber to provide a means to cool the chamber from higher than room temperature point down to near room temperature without consuming expectorant. After the ambient air blower cools the chamber to near room temperature, normal expectorant cooling would be used to cool to the low temperature point. Cooling provided by the blower follows an exponential curve. When the difference between the chamber and ambient temperature is large very high rates of cooling are realized. Use of this feature saves a considerable amount of expectorant when cycling between high and low temperature points. To control the ambient blower refer to Chapter 5: Detailed Command Descriptions, command AB and command OUT.

AMBIENT AIR BLOWER INSTALLATION

The EC1xHA chambers come with an ambient air blower which must be installed on the mounting screws on the back of the chamber. The hardware consists of the blower, four washers and four screws. The blower has three leads, green, brown & blue. The mating leads coming from the chamber are green, white & black. The leads connect as follows:

- **Blower**
- **Chamber**
- Green ___________ Green
- *Blue___________ White
- *Brown___________ Black

*Because the ambient blower is AC powered, the blue & brown blower leads may be connected to the white & black chamber leads in either order.

Note: On older revision chambers the blower had green, red & black leads and the mating leads from the chamber were green, red & red. The leads connect as follows:

- **Blower**
- **Chamber**
- Green ___________ Green
- *Red___________ Red
- *Black___________ Red

*Because the ambient blower is AC powered, the red & black blower leads may be connected to the two red chamber leads in either order.

SETTING THE FAIL-SAFE

There are two types of fail-safe, mechanical and electronic. See INFORMATION ABOUT YOUR CHAMBER on page two or look at the back of the chamber to determine which fail-safe the Model EC1X chamber contains. Chambers with a mechanical fail-safe will have a small adjustment screw located on the back of the chamber. Chambers with an electronic fail-safe will have a small box containing a digital display, circuit breaker and two adjustment buttons mounted on the back of the chamber. Refer to photos in Section 1, CHAMBER REAR VIEW.

SETTING THE MECHANICAL FAIL-SAFE

The mechanical fail-safe provided with the chamber is a safety device to prevent the chamber from inadvertently overheating. The user will need to determine the maximum temperature that the chamber is allowed to reach. This temperature is set to +155ºC from the factory. To change this temperature, perform the procedure listed below. If this maximum temperature is ever reached in the chamber, the fail-safe light on the front of the chamber will light and the circuit breaker on the rear of the chamber will trip, thus removing power from the heaters.
1. Locate the fail-safe adjusting hole on the rear of the EC1x and displace any insulation material which may block access to the fail-safe adjusting screw.

2. If the desired trip point is higher than +155ºC, the fail-safe adjusting screw must be turned counterclockwise a couple of turns. This sets the fail-safe at a higher value and will not trip the circuit breaker. If the desired trip point is lower than +155ºC, it is not necessary to adjust the screw at this time.

3. Set the chamber temperature to the desired trip point temperature and set the wait time to 10 minutes. For example, if the desired trip point is +155ºC, the following keystrokes from the front panel would be necessary:

 Green SHIF SET= 1 5 5 [Displays SET=155] Set target temperature to 155ºC
 ENTER

 Green SHIF WAIT= 1 0 [Displays WAIT=10] Set wait time to 10 minutes
 ENTER

 To set the trip point for a temperature other than +155ºC, replace the 155 with the desired trip point.

 Note: The above assumes that ºC is the default setting for units for the chamber probe.

4. After the chamber is at the set point for 10 minutes, the buzzer will sound and the Time Out LED will light on the front panel. The fail-safe can now be set.

5. Using a small blade screwdriver, slowly adjust the screw clockwise to lower the fail-safe trip point until the heater circuit breaker on the rear of the unit trips. The fail-safe LED on the front panel will also light. When this occurs, stop turning the screw clockwise and turn the screw 1/4 of a turn counterclockwise and reset the heater circuit breaker to restore normal operation. If the circuit breaker does not reset, adjust the fail-safe slightly more in the counterclockwise direction until the circuit breaker remains on and the chamber functions normally.

SETTING THE ELECTRONIC FAIL-SAFE

The electronic fail-safe provided with the chamber is a safety module to protect the chamber from a number of possible conditions. There are two electronic fail-safe options available.

Limit Module (LM) Option:

The Temperature Limit Module detects the following conditions and causes the dual pole circuit breaker to open:

1. If the chamber temperature exceeds the Upper Temp Limit (UTL) setting of the module.
2. If the chamber temperature goes below the Lower Temp Limit (LTL) setting of the module.
3. If the module's thermocouple should fail as an open circuit.
4. If the module's power supply should fail. Such as its fuse blowing.
5. If a current of 2 amps or more is detected to the chamber chassis earth ground. This condition can occur, for example, if a heater element fails in such a way that the heater element wire breaks and comes in contact with the inner chamber wall.
When the 2 pole breaker opens, all line power is removed from the heater circuitry. Opening of the breaker also causes a signal to be sent to the chamber main controller electronics. The main controller, upon indication of the breaker open state, then turns off all fans and valves and turns on the FAIL-SAFE LED. Once the breaker is tripped open, it will stay in the open tripped state until manually reset by moving the handle to the up position. Before resetting the breaker it is necessary to correct the cause of the breaker trip, else it will trip again within a few seconds. Never hold the breaker lever in the up position, just push it up and release the lever.

The breaker and Limit Module are located on the rear of the chamber. There is a 3 1/2 digit LCD display that normally display's the chamber temperature as sensed by the Limit Module. There are two push keys and two screws that can be removed to access the UTL and LTL adjustment pots. To view the current UTL setting, push and hold the RED key. To adjust the UTL setting, remove the screw above the red key then while holding the red key use a small flat tipped screw driver and adjust the UTL setting. The LTL setting is done in a like manner using the BLUE key and its adjustment pot that is located above the blue key.

Note: The Limit Module's temperature accuracy is much less than the temperatures displayed on the front panel. The module was designed to be a simple analog circuit to provide reliable chamber protection. Its temperature accuracy was not a design goal. For example, one may need to set the Limit Module UTL to 303°C or so to cause the circuit breaker to trip at 300°C actual chamber temperature.

Upper and Lower Temperature Limit Adjustment Pots
LM3 Option:

Chamber models with the –LM3 description incorporate a REV G2 controller, a TLIM03 controller and a GFI breaker trip module. The TLIM03 is a temperature limit module mounted under the main motherboard cover plate with its own K thermocouple sensor to monitor the workspace inside the chamber and acts as a redundant fail-safe. The breaker trip module is located on the top left rear of chamber.

The standard G controller has been modified to include another RS232 serial port and some changes to the process outputs (internally). The new G2 controller can automatically control the TLIM03 temperature limit module via the new RS232. Whenever the upper or lower temperature limit is set in the G2 main controller, it sends the same limit to the TLIM03 controller. The G2 board also sends a query to the TLIM03 about once per minute to make sure it is operational. If the proper reply is not received, the G2 will display a message on its LCD display to inform the user. If a NO LIMIT MOD display is seen, issue a UTL=155 command from the front panel to resynchronize. If the display continues, even after unplugging the chamber for 1 minute, call the factory.

The operation of the chamber is as follows:

1. The primary fail-safe is the main motherboard (G2 controller). The user must set the UTL and LTL limits as usual via the front panel or remote bus. The G2 controller will also send these same limits to the TLIM03 module.

 The following example shows how to set the Upper and Lower Temperature Limits:

 green SHIFT LTL = -10.5 [Displays LTL=-10.5] Set chamber lower temperature limit
 ENTER

 green SHIFT UTL = 200 [Displays LTL=200] Set chamber upper temperature limit
 ENTER

 The following commands can be used to display the chamber’s current LTL and UTL settings:

 green SHIFT LTL ? [Displays LTL?] Display current lower temperature limit
 ENTER

 green SHIFT UTL ? [Displays UTL?] Display current upper temperature limit
 ENTER

2. The chamber is given a SET= command to instruct it to go to a set temperature. We have removed the check that the set temperature should be within the limits in this special version.

3. If the G2 controller should detect that the chamber temperature is outside the temperature limits (i.e. exceeds the UTL, LTL) it will immediately turn off the appropriate heat or cool enable. This should cause the temperature to return within limits in a short time. If the temperature stays outside the limits for 20 more seconds, the G2 controller will send a trip request to the breaker trip module located on the back of chamber. The breaker module will cause the 2 pole breaker to trip open if the request stays active for about 6 seconds. The breaker module will cause the 2 pole breaker to trip open if the request stays active for about 6 seconds. Once the breaker trips ALL POWER is removed and only the ground wire is connected to the electrical outlet. To resume chamber operation, the user must lift the breaker handle to the UP position.

4. As a second independent temperature limit module, the TLIM03 will send a trip request to the breaker if its temperature reading is outside the UTL or LTL for 60 seconds. In about 6 seconds the breaker module will trip.
5. An optional third independent upper temperature limit, the bimetal adjustable thermostat, may also be used to send a trip request to the breaker when it detects an over temperature condition. We suggest the bimetal sensor be set to the highest temperature you expect to require. This can also be used instead of the TLIM03 module.

6. If the DC power supply that powers the G2 and TLIM03 modules happens to fail, that will also cause a breaker trip request.

7. As a last measure of protection, should the breaker trip module detect a current imbalance (>2A) between the 2 poles of the breaker, which would be caused by ground current flow, the breaker will trip (GFI protection). This will protect against a heater element short to chassis ground or any other ground current flow.

Periodically, to insure that the breaker trip module is operational, issue a hot set point (e.g. SET=60). Then set the UTL to a lower temperature such as 25°C. The G2 should then disable the heat when the UTL is exceeded. After approximately 20 seconds, the G2 controller should send a trip request to the breaker trip module.

EC1X CHAMBER INSTALLATION

The EC1x is factory wired for AC sources delivering 110 V_{ac} 50/60 Hz or 200-240 V_{ac} 50/60 Hz. A tag located on the back panel of the chamber indicates the proper voltage to be applied. Insure that the current rating of the service is sufficient to provide the necessary amounts of power required by the chamber (see Section 7: Specifications). Install the chamber on a surface which is flat, rigid and free from shock and vibration. Orient the chamber in such a manner that the control panel, door and coolant connection are readily accessible. Insure that 2 inches of free air space exists between the rear of the blower motor and any other objects.

The Model EC1x is ready for operation once all packing material has been removed from around and within the Model EC1x, the unit is connected to its primary power source, a coolant supply is connected to the unit and, if required, an appropriate exhaust vehicle is connected to the exhaust port. Press the yellow power key located on the bottom of the front panel. After self check is complete the Model EC1x should power up with the LCD display indicating Chamber probe temperature and USER probe temperature. The blower located in the rear of unit should be operating. The Model EC1x is now ready to accept commands.

INITIAL START UP

The following sample shows how to set a single temperature segment. The commands in this sample will cause the chamber to go to 40°C at a rate of 30°/minute and stay there for 1 minute 10 seconds then time out.

- green SHIFT RATE= 3 0 ENTER [Displays RATE=30] Set temperature rate of change to 30°C/min
- green SHIFT WAIT= 0 [Displays WAIT=0] Set wait time to 1 minute 10 seconds
- green SHIFT : 1 [Displays WAIT=0:1]
- green SHIFT : 1 0 [Displays WAIT=0:1:10]
- green SHIFT SET= 4 0 ENTER [Displays SET=40] Set target temperature to 40°C
SAMPLE LOCAL PROGRAM #1

The following sample program demonstrates some of the most used features. Follow the sample below to enter the local program into program location 0 (Local programs can be stored in locations 0-9). The program will cause the chamber to go to 50°C at a rate of 30°C/minute and stay there for 5 minutes. After the 5 minutes at 50°C the buzzer will sound and BKPNT 1 will be displayed. To continue from the breakpoint press ENTER. The chamber will then go to 0°C, at a rate of 25°C/minute and stay there for 7 and 1/2 minutes. Then BKPNT 2 will be executed, press ENTER to continue. Then the above will be repeated 5 times by the FOR - NEXT loop.

red SHIFT DELP 0
ENTER
YES
ENTER
[Displays Delp #0] Delete existing program #0 (if any)
[Displays YES/NO] Confirm program #0 delete (if any)

red SHIFT EDIT 0
ENTER
[Displays EDIT #0] Create or edit program #0
[Displays free memory then line #1, if program is empty then END is displayed]

Note: While in edit mode, red SHIFT up and down arrow keys allows the user to move in the local program. Red SHIFT DELLL allows the user to delete the current displayed program line. A line can be inserted in front of the current displayed program line by entering the new line.

red SHIFT FOR 0 = 1, 6
ENTER
[Displays FOR I0=1,6] Set number of cycles = 5

green SHIFT RATE=3 0
ENTER
[Displays RATE=30] Set temperature rate of change to 30°C/min

green SHIFT WAIT= 5
ENTER
[Displays WAIT=5] Set wait time to 5 minutes

green SHIFT SET= 5 0
ENTER
[Displays SET=50] Set target temperature to 50°C

red SHIFT BKPNT 1
ENTER
[Displays BKPNT 1] Pause

green SHIFT RATE= 2 5
ENTER
[Displays RATE=25] Set temperature rate of change to 25°C/min

green SHIFT WAIT= 0
[Displays WAIT=0] Set wait time to 7 minutes 30 seconds

green SHIFT : 7
[Displays WAIT=0:7]
green SHIFT : 30
[Displays WAIT=0:7:30]

green SHIFT SET= 0
ENTER
[Displays SET=0] Set target temperature to 0°C

red SHIFT BKPNT 2
ENTER
[Displays BKPNT 2] Pause

red SHIFT NEXT 0
ENTER
[Displays NEXT I0] Close For/Next loop of 5 cycles
green SHIFT RUN 0 [Displays RUN #0] Run Local Program #0

Note: The command green SHIFT I0? can be used to display the current cycle.
Note: See Section 5 for chamber commands in alphabetical order.

SAMPLE LOCAL PROGRAM #2

Follow the sample below to enter the local program into program location 1 (Local programs can be stored in locations 0-9). This sample program will cause the chamber to go to 125°C at a rate of 100°C/minute and stay there for 45 minutes. The chamber will then go to -55°C at a rate of 100°C/minute and stay there for 30 minutes. Then the above will be repeated 20 times by the FOR - NEXT loop. The chamber will then go to 25°C at a rate of 100°C/minute then stay there for 1 minute before timing out.

green SHIFT EDIT 1 [Displays EDIT #1] Edit Program 1

red SHIFT FOR 0 = 0,20 [Displays FOR I0=0,20] Cycles = 20

green SHIFT RATE= 100 [Displays RATE=100] Set temperature rate of change to 100°C/min

green SHIFT WAIT= 45 [Displays WAIT=45] Set wait time to 45 minutes

green SHIFT SET= 125 [Displays SET=125] Set target temperature to 125°C

red SHIFT NEXT 0 [Displays NEXT I0] Close For/Next loop of 20 cycles

green SHIFT WAIT= 1 [Displays WAIT=1] Set wait time to 1 minute

green SHIFT SET= 25 [Displays SET=25] Set target temperature to 25°C

red SHIFT END [Displays END LP] End local program #1 edit

green SHIFT RUN 1 [Displays RUN #1] Run Local Program #1
Note: The command green SHIFT I0? can be used to display the current cycle.

Note: See Section 5 for chamber commands in alphabetical order.
SECTION 3. OPERATION AND COMMAND OVERVIEW

The Model EC1x is very adaptable to your test system architecture requirements. Whether issuing commands from the local front panel keyboard or remotely from over the IEEE-488 GPIB interface or RS232/422 serial interface, you have full control of the Model EC1x capabilities. This chapter starts off with a command overview section to assist users who are new to the operation of the Model EC1x followed by sections which define in detail the operation of the Default, Interrupt and Calibrate Menus. Setting of the fail-safe was covered in section 2. Section 5 contains an alphabetically sorted, detailed description for all commands which may be used as a programming reference.

COMMAND OVERVIEW

This section groups the various commands available for the Model EC1x by function and gives a brief definition for the command. Consult Section 5 for a detailed definition on a particular command.

Commands from the local control panel described in the following sections may require several keystrokes followed by depressing the ENTER key. Commands from the GPIB interface are terminated with the EOI and/or a line feed character. Command lines from the RS232/422 interface may be terminated with a line feed or carriage return character or both carriage return and line feed characters. Numeric values with leading and trailing zeros and spaces are accepted and integer, fixed and floating point values are converted as required. Lower case characters are automatically converted to upper case.

If an error is made during command entry, either locally or remotely, a COMMAND ERROR message is displayed. To determine the cause of the error, you may press the [?] Key followed by the ENTER key from the local keyboard or ? ENTER from a remote interface. The controller will provide a 2 line response. The first line will be a copy of the last command received. The second line will be either a pointer to the error, or an explanation of the error. If there was no error in the last command received, the controller will respond with a two line “OK” “OK” message.

CONTROL PANEL OPERATORS

To permit easy command entry and local program generation, the following operators on the local control panel permit command entry, command cancellation, menu decisions, single command line editing during STOP mode and program editing during EDIT mode.

UP, DOWN ARROWS Line editing during Local Program editing.
DELL Delete current program line
DELP n Delete local program number n
LEFT ARROW Character backspace during command entry.
CANCEL Cancels present command entry.
ENTER Enters command into Model EC1x controller or inserts a line into the local program.
YES, NO Operators for SDEF, SINT and CAL menus.
PARAMETER ENTRY
Parameters are used for numeric data entry, delimiters and function operators in command lines.

0-9 . + _ Numeric data (depicted as nnn.n in following sections)
. : , Numeric delimiter.
E Exponent for scientific notation.
= Set variable left side equal to value right side.
? Examine variable left side.

RS232/422 SERIAL PORT PROTOCOLS
The serial port’s operation depends on whether CMD ERROR INT’S are enabled or disabled in the SINT menu. If command error interrupts are disabled, no indication to the host computer communicating to the serial interface is given as to whether a command was accepted or rejected. To determine last command status the ? command may be used. If command error interrupts are enabled, the controller responds with a ? prompt if the command received was rejected. If the command was accepted and the type of command does not invoke a reply, i.e., such as a SET=nnn.n command, the controller will reply with an OK message. If the accepted command invokes a reply, then the reply is sent without the OK message. The CMD ERROR INT ENABLED mode is convenient since every command sent to the controller generates a reply back to the host computer thereby providing a handshake.

As covered, many of the RS port operating parameters are set up in the SDEF menu. The SDEF menu allows setting of the BAUD RATE, RS232 or RS422 levels, ECHO on / off, and whether to use hardware handshake. The serial port sends a zero for the parity bit and does not check incoming parity (8 Data Bits, No Parity, 1 STOP Bits). When DTR/CTS is not selected, only the TRAN DATA, REC DATA and GROUND signal lines are significant to the controller.

RS232 WIRING DIAGRAM
To communicate over the RS232 bus, a cable constructed with a male DB25 connector on the EC1x controller and a female DB9 connector on PC end and wired as follows is required:

<table>
<thead>
<tr>
<th>EC1x CONTROLLER (DB25 Male)</th>
<th>COMPUTER (DB9 Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pin#)</td>
<td>(pin#)</td>
</tr>
<tr>
<td>(2) TxD</td>
<td>RxD (2)</td>
</tr>
<tr>
<td>(3) RxD</td>
<td>TxD (3)</td>
</tr>
<tr>
<td>(7) GND</td>
<td>GND (5)</td>
</tr>
</tbody>
</table>

To communicate through Windows, use the following settings:

Connect using desired COM port
Bits per second: (same baud rate selected in SDEF Menu)
Data bits: 8
Parity: NONE
Stop bits: 2 (REV D and older can use stop bit 1 and 2)
Flow Control: NONE
If your computer is using a DB25 Male connector instead of the DB9, the wiring connections are as follows. For example purposes this diagram also assumes DTR/CTS control is selected.

```
EC1x CONTROLLER (DB25 Male)  COMPUTER (DB25 Female)
(2) TxD  __________  RxD (3)
(3) RxD  __________  TxD (2)
(6) DRS  __________  DTR (20)
     |  __________  DCD (8)
     |  __________  DSR (6)
(20) DTR  __________  CTS (5)
(7) GND  __________  GND (7)
```

** NOTE: CTS & DTR are Optional. If enabled in SDEF Menu but not hardwired, unit will not communicate.

GPIB (IEEE-488) REMOTE CONTROL

The EC1x GPIB interface supports SERIAL and PARALLEL POLLING. The EC1x’s GPIB device address is set up from the SDEF MENU. To send a command to the EC1x you will send the ASCII string for the command, as given in this manual, with a line feed and/or EOI terminator, a carriage return if sent will be ignored. Data sent by the EC1x to the bus controller will be ASCII characters terminated with carriage return then line feed with EOI set. If any interrupts are enabled and the GPIB remote is active and an interrupt occurs the SRQ line will be asserted on the bus. The system controller can then perform a serial poll, or parallel poll if enabled in the SINT MENU, to service the interrupt. If you chose not to service the EC1x interrupts, the EC1x will display an SRQ OVERFLOW message. The message is just to inform you that an interrupt has not been serviced and can be ignored without causing any problem. Also by disabling interrupts in the SINT menu, or via the SINT=command, the interrupts may be turned off. The parallel poll bit, as set in the SINT menu, can be used to increase interrupt service speed when there are a number of interrupting devices on the GPIB bus.

GPIB PORT PROTOCOLS

When CMD ERROR INT’S are enabled, the GPIB port sends a CMD ERROR SRQ interrupt on commands received with errors. If command error interrupts are disabled, then no response is sent to the GPIB port if command errors are detected. In all cases, the only data that is sent to the GPIB interface by the controller is that which is requested by a command received by the controller. The GPIB port does not respond with "OK" after commands that do not send back data, since it does not require extra command handshaking.

The SDEF menu allows you to set the GPIB address, and the GPIB LOCKUP TIME, which is the length of time that the controller will wait for the host to accept data before generating a GPIB LOCKUP interrupt. The SINT menu also provides the ability to set up the parallel poll.

POWER, HEAT, AND COOL ON/OFF CONTROL COMMANDS

These commands turn the Model EC1x main power on/off and enable or disable the heat and cool functions. On the Model EC1x control panel, these functions have separate function keys located at the bottom of the panel. The switches operate in a push-on/push-off or alternate action fashion. The indicator is on when the function is enabled. The following commands are for remote operation only. When the Model EC1x main power is OFF and the unit is plugged in, the controller will only accept the ON or STATUS? commands from a remote interface.
ON Turn Model EC1x main power on.
OFF Turn Model EC1x main power off.
HON Enable heat function.
HOFF Disable heat function.
CON Enable cool function.
COFF Disable cool function

TEMPERATURE CONTROL COMMANDS

Temperature control commands allow you to set or examine temperature segment parameters. A temperature segment in the Model EC1x is defined by the rate of change of temperature (RATE) from the present chamber temperature to the final temperature (SET) and by the amount of time to wait (WAIT) at the final temperature before continuing with the next temperature segment. Upon detection of a SET command, the controller uses the values as given by the RATE and WAIT commands and initiates the proper action to implement the temperature segment. For best operation enter the RATE and WAIT information before entering the SET point. The CSET? command allows you to examine the current temperature which the controller is attempting to control during ramps from one temperature to another. This value changes at the rate defined by the RATE command until the SET value is reached. At that point CSET is equal to the SET value. The chamber and user temperature may be read remotely at any time and are displayed on the LCD display.

- **SET=[-]nnn.n[u]** Set segment final temperature.
- **SET?** Examine present segment final temperature.
- **WAIT=nn:nn:nn** Set temperature soak period at final temperature (HRS:MIN:SEC)
- **WAIT=nn** Set wait time (MIN)
- **WAIT=F{OREVER}** Wait Period never times out.
- **WAIT?** Examine present wait period.
- **RATE=nnn.nn[u]** Set temperature ramping rate at nnn.nn degrees per minute
- **RATE?** Examine present temperature ramping rate.
- **CSET?** Examine present temperature of which controller is attempting to control.
- **UCHAN?** Examine USER probe value.
- **TEMP?** Examine CHAMBER probe value.
- **SCALE#1?** Examine Units of Scale for the Chamber Probe, C,F, or K.
- **SCALE#2?** Examine Units of Scale for the USER Probe, C, F, or K.
- **TIME=hh:mm:ss** Set Time of Day
- **TIME?** Examine present Time of Day
- **STOP** Prematurely terminate the run mode or make set=none if run mode not active

[u] is optional units character C,F, or K.
TEMPERATURE SAFETY LIMIT COMMANDS

Temperature limit commands are used for safety reasons and to insure test parameters are not exceeded. Lower and upper temperature limits prevent setting temperatures in violation of the limit setting. In addition, upper and lower temperature limit commands shall generate an interrupt to the active remote device if the chamber exceeds one of the temperature limits. If the chamber temperature exceeds the upper temperature limit, the controller will automatically turn off chamber heating. If the chamber temperature exceeds the lower temperature limit, the controller will automatically turn off chamber cooling. The deviation limit generates an interrupt to the remote interface, if enabled in the SINT menu, if the chamber temperature exceeds the tolerance you specified via DEVL command.

LTL=[-]nnn.n[u] Set chamber lower temperature limit.
LTL? Examine lower temperature limit
UTL=[-]nnn.n[u] Set chamber upper temperature limit.
UTL? Examine upper temperature limit.
DEVL=nnn.n[u] Sets maximum +/- chamber temperature deviation limit.
DEVL? Examine deviation limit.

Note: EC1x chambers with the LM3 option use the temperature limit commands to set the fail safe limits.

CONTROL LOOP PARAMETER COMMANDS

The Model EC1x permits the user to modify PID and PWM characteristics with these commands. When examining PID coefficients, P, I, and D are displayed approximately 3 seconds apart with the value following a P, I and D on control panel display. These commands typically apply to unique circumstances which involve varying loads of mass or radiant power. The PID coefficients are set at the factory for normal operation. If it is necessary to change the default settings Sun Systems can provide a PID Application Note containing an instructional overview on how to set the PID coefficients for a particular chamber and load. The Pulse Width Modulator (PWMP) parameter permits the controller to adjust the control rate at which the temperature is maintained in the chamber. This feature may conserve coolant valve wear when long soak durations are applicable and larger deviations are permissible by increasing the PWM time period. For normal operation, the PWM rate should be set at the minimum rate of 2 seconds as shipped.

PIDH= n.nn, n.nn, n.nn Set Heat PID coefficients P, I, D
PIDH? Examine Heat PID coefficients.
PIDC= n.nn, n.nn, n.nn Set Cool PID coefficients P, I, D.
PIDC? Examine Cool PID coefficients.
PWMP=nn Set PWM period (2 to 30 seconds).
PWMP? Examine present PWMP value.
PIDA? Examine advanced PID setting
PIDA=n[,mmm.m] Set advanced PID mode
LOCAL PROGRAM COMMANDS

The Model EC1x provides commands to control the flow of local programs which permit automatic test operation by the chamber. Up to 10 programs may be entered into the Model EC1x either from the local control panel or from either the GPIB or RS232/422 interfaces. Programs may call other programs as subroutines with the GOSUBn instruction. The Model EC1x provides 10 global integer variables designated by the letter I. The I variable may be used in FOR In/NEXT In statements for multiple pass loops, the I variable may be used in IN and OUT instructions for communication with Model EC1x I/O interfaces and it may be used in arithmetic expressions containing additions and subtractions. The END instruction designates the end of a local program or subroutine. The red END command is used to terminate the edit mode.

A program is entered into the Model EC1x locally from the front panel by using the EDIT m function, where m is the number of the program, 0 thru 9. Programs may be downloaded from a remote interface using the STORE command. Command DELL permits deleting program lines during local edit. DELP m deletes program m, where m is 0 thru 9. A program is executed using the RUN m and prematurely terminated with the STOP command.

Debug assistance and host computer synchronization is provided with the BKPNT nn or BKPNT Im commands, which permit the operator to place breakpoints in the program that suspend program execution until the ENTER key is depressed on the local control panel or until a remote BKPNTC command is received. BKPNTnn displays the value nn and BKPNT Im displays the value of variable Im when encountered during local program execution. The remote BKPNT? command is provided so that the host computer may determine the breakpoint value.

EDITm
RUNm
RUN m TIME=nn
STOP
DELL
DELPm
BKPNTnnn
BKPNTIm
FORIm=[starting integer value], [ending integer value], [+ / -]
where m=0 thru 9
NEXTIm
Im=nnnn
GOSUBm[m=0 thru 9]
END
LIST#m
STORE#m

EDIT program m, m=0 thru 9.
RUN program m, m=0 thru 9.
RUN program m at time of day
STOP all program execution.
DELETE LINE currently being displayed during edit mode.
DELETE PROGRAM m, m=0-9.
BREAKPOINT, suspends program operation and displays Integer Bkpnt nnn value
BREAKPOINT, suspends program operation and displays current “Im” value
FOR statement marks the beginning of a loop.
The “Im” variable is either incremented [+ , default] or decremented [-] from the starting integer to the ending integer.
FOR statements may be nested 4 deep.
NEXTIm marks the end of the FOR loop.
where m=0 thru 9 and nnnn= -32767 thru 32768
Set integer “Im” to 16 bit signed integer value
GOSUB calls a program as a subroutine and may be nested 4 deep.
End of program statement. Or return if called as a subroutine
List program “m” to a remote interface.
Store program “m” from a remote interface.
MODEL TC01/EC0X COMPATIBILITY COMMANDS

The Model EC1x provides limited upwards compatibility with our Model TC01 temperature controller and our Model EC0x environmental chambers as described below. Consult your TC01 manual for a complete definition of these commands.

nnn.nC
Set Chamber Temperature (deg C)

C
Examine Chamber Temperature (deg C)

nnn.nM
Set Time at Temperature, Wait time (minutes)

M
Examine Time at Temperature (minutes)

T
Examine Chamber Temperature in deg C always

nnnULT
Set Upper Temperature Limit (deg C)

ULT
Examine Upper Temperature Limit (deg C)

!sss...sss
Transfer String sss...sss received from GPIB to RS232/422 interface

S
Transfer next string received from RS232/422 interface to GPIB

DEVICE I/O COMMANDS

The device I/O commands permit communication from the local control panel or from a host computer to or from the many I/O devices resident in the Model EC1x. Consult Section 4 for the proper format of the command for the particular device you wish to communicate with.

INj:k,In
Read input port number “j” address “k” into integer variable In

In?
read value of integer variable In

OUTj:k,l
Write to output port number “j” address “k” data “l”. An I variable may also be used in data field

NOTE: j=0 for BIT I/O, j=1 for USER PORT, j=3 for ANALOG PORT

SET DEFAULT MENU (SDEF)

The Model EC1x contains default values which may be tailored to your individual test system requirements. The values are stored in nonvolatile memory eliminating the need to reload after a power interruption. Refer to Section 5, command STOPE9, for information about restoring the factory default settings. This command will delete all local programs.

LOCAL CONTROL OF THE SET DEFAULT MENU (SDEF)

The default values may be set locally from the control panel by depressing the SDEF, ENTER keys followed by responding to the menu oriented questions on the control panel display with either a YES or NO or a numeric value. To maintain current settings, that is displayed inside parentheses (), just press ENTER key. The format of the menu is as follows:

SDEF
Enter Set Default mode.

Set Up Defaults? [Y/N]
Enter YES if you want to modify defaults.

GPIB Address? 0-30
Enter GPIB address.

GPIB Lockup Time? 0,2-59 sec
Enter GPIB interface max. lockup time.
If Time=0, then GPIB lockup interrupts are disabled.
Timeout Pre_Time? 0-59 sec
Enter GPIB SRQ or Serial Interface advanced interrupt generation before actual wait period timeout.

Power Down Restart? 0-59 min
Disables automatic restart of controller above set minutes.

Serial Port Mode? 1=RS232, 2=RS422
Enter 1 or 2

RS Char Echo On? [Y/N]
Enter YES for serial port character echo

Baud Rate 1=38,400 to 4=2400
Enter 1 through 4
1 = 38,400 Baud
2 = 19,200 Baud
3 = 9600 Baud
4 = 2400 Baud

RS DTR-CTS on? [Y/N]
Enter YES for hardware handshake

Buzzer Volume 0 = OFF to 3
Enter 0=OFF, 1=SOFT, 2=MEDIUM, 3=LOUD

Line Frequency 1= 60 Hz, 2 = 50 Hz
Enter 1 for 60 Hz or 2 for 50 Hz line frequency

Chart CHAM on A? [Y/N]
Chart chamber temperature on D/A output channel A.
Enter Yes or No. If YES, then the controller prompts:

ENTER LOW VALUE - Enter lowest value to chart (in degrees) for this channel.
ENTER HIGH VALUE - Enter highest value to chart (in degrees) for this channel.

Chart USER on B? [Y/N]
Chart USER probe temperature on D/A output channel B. Enter Yes or No. If YES, then the controller prompts:

ENTER LOW VALUE - Enter lowest value to chart (in degrees) for this channel.
ENTER HIGH VALUE - Enter highest value to chart (in degrees) for this channel.

Low Chart value?
Enter chart low end temperature

High Chart Value?
Enter chart high end temperature

 +/- at Wait Trigger?
Enter temperature tolerance at which the controller starts wait time countdown.

Setup Coolant Valves?
Enter YES to change coolant type

If you answered YES to Setup Coolant Valves:
 LCO₂ (850 PSI)?
Enter YES if your chamber is setup for 850 PSI LCO₂.

 Auto 3 Tank CO₂
Enter YES if chamber is setup for 3 tank LCO₂.

 CO₂ (300 PSI)?
If you answered NO to 850 PSI LCO₂, Enter YES if your chamber is setup for 300 PSI LCO₂.
Auto 2 Tank CO₂ Enter YES if chamber is setup for 2 tank LCO₂

Liquid Nitrogen? Enter YES if your chamber is setup for LN₂

Redundant Valves? Enter YES if your chamber has redundant valve option installed.

LN₂ Line Purge? Enter YES if your chamber has line purge valve option installed.

Auto 2 Tank LN₂? Enter YES if your chamber is setup for 2 tank LN₂

AMB_BLOWER_COOL? Only applies to EC1xHA chambers (Ver 3.23 & up) and is intended to be used on EC1xHA chambers that do not have coolant hooked up. Enter YES to enable the automatic cooling of chamber with ambient air when the set point is > or = 25°C and the chamber temperature exceeds the set point by 1°C. Expectorant cooling will occur as usual as long as the cool enable is ON. (See AB and OUT Command)

Auto SENSE IN0? Enter YES if your chamber is setup to automatically detect logic on input bit 0 and shut off Heat and Cool. This is commonly used or a "Door Open" sensor. Default setting is NO. If enabled (yes) & chamber is not set up for this, Error - b0 Force H&C OFF occurs.

SENSE LOGIC (Hi=1, Lo=0) Enter 0 or 1 based on the logic setup in your chamber.
(Refer to "Your equipment configuration in the manual"

REMOTE CONTROL OF THE SET DEFAULT MENU (SDEF)
The interrupt values may be set remotely from the GPIB, RS-232 or RS422 by utilizing the SDEF=xxxxxxxxxn command. Refer to Section 5, command SDEF for details.

SET INTERRUPT MENU (SINT)
The Model EC1x contains interrupt assignment values for the local alarm, serial interface, and GPIB interface/SRQ interrupt. The values are stored in nonvolatile memory eliminating the need to reload after a power interruption. Refer to Section 5, command STOPE9, for information about restoring the factory default settings. This command will delete all local programs.

LOCAL CONTROL OF THE SET INTERRUPT MENU (SINT)
The interrupt values may be set locally from the control panel by depressing the SINT, ENTER keys followed by responding to the menu oriented questions on the control panel display with a YES, NO or numeric response. To maintain current setting, that is displayed inside (), just press ENTER. The format of the menu is as follows.

SINT Enter Set Interrupt mode.

Set up Interrupts? [Yes/No] Enter YES if you want to modify interrupts.

BUZZ LP Timeout? [Yes/No] Enter YES to enable BUZZER after each temperature segment timeout during Local Program execution.

BUZZ LP Done? [Yes/No] Enter YES to enable BUZZER when the end of a Local Program is encountered.
BUZZ Single T.O.? [Yes/No] Enter YES to enable BUZZER at the end of each temperature segment timeout in single temp. mode.

INT LP Timeout? [Yes/No] Enter YES to enable Timeout Interrupts after each temperature segment timeout during Local Program execution.

INT LP Done? [Yes/No] Enter YES to enable LP Done interrupt when the end of a Local Program is encountered.

INT SINGLE T.O.? [Yes/No] Enter YES to enable a Single Temp. Timeout interrupt at the end of each temperature segment in single temp. mode.

DEVIATION INT? [Yes/No] Enter YES to enable DEVIATION Interrupts.

CMD ERROR INT’S? [Yes/No] Enter YES to enable Command Error Interrupts

BKPNT INTERRUPT [Yes/No] Enter YES to enable breakpoint Interrupts.

P_POLL{1-8} 0=NO Enter 0 to disable parallel poll or 1 thru 8 to set bit position for parallel poll.

CAL menu access code? The number that is entered will become the code that the CAL menu will expect to grant access. A “0” number will turn off CAL access code. (default 9)

REMOTE CONTROL OF THE SET INTERRUPT MENU (SINT)
The interrupt values may be set remotely from the GPIB, RSS232 or RS422 by utilizing the SINT=xxxxxxxxxxn command. Refer to Section 5, command SINT for details.

REMOTE INTERRUPT CHARACTERS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Serial Port</th>
<th>GPIB Port (HEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Interrupt</td>
<td>(n/a)</td>
<td>$00</td>
</tr>
<tr>
<td>Single T.O. INT</td>
<td>I</td>
<td>$41</td>
</tr>
<tr>
<td>Command Error INT</td>
<td>?</td>
<td>$42</td>
</tr>
<tr>
<td>LP Timeout INT</td>
<td>P</td>
<td>$43</td>
</tr>
<tr>
<td>LP Done INT</td>
<td>E</td>
<td>$45</td>
</tr>
<tr>
<td>DEVIATION INT</td>
<td>D</td>
<td>$46</td>
</tr>
<tr>
<td>OVER Temperature INT</td>
<td>O</td>
<td>$47</td>
</tr>
<tr>
<td>UNDER Temperature INT</td>
<td>U</td>
<td>$4A</td>
</tr>
<tr>
<td>GPIB Lock-up INT</td>
<td>(n/a)</td>
<td>$4F</td>
</tr>
<tr>
<td>POWER Going Down</td>
<td>!</td>
<td>(none)</td>
</tr>
<tr>
<td>POWER Up no auto cont.</td>
<td>Z</td>
<td>(none)</td>
</tr>
<tr>
<td>POWER Up auto cont.</td>
<td>X</td>
<td>(none)</td>
</tr>
<tr>
<td>BKPNT</td>
<td>B</td>
<td>$50</td>
</tr>
</tbody>
</table>
PROBE CALIBRATION MENU

The Model EC1x contains two electrically isolated, high performance probe front ends capable of interfacing to a variety of different probe types. There are two ways to calibrate the chamber and/or user probes. The CAL menu permits you to select a probe type, calibrate the probe, and/or select the units of measure for the probes. The CAL menu must be used if you are changing the probe type. If the type of probe is not going to be changed then the "CAL TO A STANDARD" commands may be used. When calibrating a probe using the CAL menu it is necessary to place the probe to be calibrated at 0º C and at 100º C. This requires removing the probes from the chamber, which is inconvenient. The CAL TO A STANDARD commands allow calibrating to a known accurate house temperature standard without removing probes. Listed below is the dialog if calibrating at 0ºC and +100ºC or with voltage or current inputs.

Green SHIFT CAL, ENTER Enter CAL mode.

The probe types that are currently configured will be display for about 3 seconds. Top line is Chamber probe, bottom line is User probe.

Calibrate Probes? [Yes/No] Enter YES if you want to change a probe type and/or calibrate a probe.

Enter No if you only desire to modify scale (ºC,ºF,ºK) for the CHAMBER and/or USER probe.

If you answer Yes to above:

ENTER CAL ACCESS CODE? At this point the menu is asking for an access number to reduce the chance of unauthorized or accidental entry to the CAL routines. The default access code as shipped from the factory is 9. The access code may be changed to any floating point number in the SINT menu.

CAL CHAM Probe? [Yes/No] Enter YES to calibrate the chamber probe

If you answer Yes to CAL CHAM PROBE, select probe type:

Note: Once a type is selected you are committed to calibrating at 0ºC and 100ºC for probes. EC1x chambers are shipped from factory with type K thermocouples installed for chamber and user probes.

RTD.385 PROBE? [Yes/No] range = -200º to +320º C [DIN 43760]
RTD.392 PROBE? [Yes/No] range = -200º to +320º C
J Thermocouple [Yes/No]? range = -200º to +320º C
K Thermocouple [Yes/No]? range = -200º to +320º C
T Thermocouple [Yes/No]? range = -200º to +320º C
Diode Probe? [Yes/No] range = -200º to +320º C

If a temperature probe type was selected:

Probe at 0ºC [ICE WATER]?(Y/N) Set probe to 0ºC. Enter YES when ready.

Probe at 100ºC [BOILING WATER]?(Y/N) Set probe to 100ºC. Enter YES when ready.

Temperature Units? (1=C, 2=F, 3=K) Enter 1, 2, or 3
If voltage or current was selected:

- **Low Scale Input (Y/N)**: Supply low level voltage or current to input and Enter YES when ready.

- **Low Scale Value?** Enter the number that represents low end process value.

- **High Scale Input (Y/N)**: Supply high level voltage or current to input and Enter YES when ready.

- **High Scale Value?** Enter the number that represents high end process value.

- **CAL USER PROBE [Yes/No]?** Repeat process similar to "CAL CHAM PROBE" for user probe.

If a "NO" answer was given to the “CAL PROBES” prompt, then you are asked if you wish to change the default units of measure (°C, °F, °K) for each channel.

CAL TO A STANDARD COMMANDS

Cal to a standard allows calibration of the chamber to your temperature standard instrument. Five commands are supplied to perform the calibration. "CALA" performs an offset cal to the first temperature point while "CALB" performs a gain cal between the first point and the second temperature supplied with the CALB command. "CALC" clears the offset and gain cal adjustments from both channels simultaneously. Each channel can also be cleared independently by using "CALC1" for channel #1 (Chamber Probe) or “CALC2” for channel #2 (User Probe).

Note: The access code is the CAL menu access code number (default 9). The standard reading is the temperature reading that your instrument is reading. The cal commands (ie. CALC, CALA1) are supported remotely by entering the ASCII string and locally by entering keystrokes.

To perform the cal to a standard (for all versions):

1. **CALC, access code «** Clears existing standard cal from chamber & user probe

 As an alternate (for REV G Ver. ≥10.00):
 - **CALC1, access code** Clears existing standard cal from chamber probe
 - **CALC2, access code** Clears existing standard cal from user probe

2. Place your standard probe as close as possible to the probe or probes to be calibrated.

3. Set the chamber to go to the first temperature point.

4. Allow 15 to 20 minutes for chamber stabilization.

5. Depress: **CALA1, access code, standard reading «** Calibrates the chamber probe offset

 where
 - A = offset performed at low temperature
 - 1 = chamber probe

6. Depress: **CALA2, access code, standard reading «** Calibrates the user probe offset

 where
 - A = offset performed at low temperature
 - 2 = user probe
7. Set the chamber to go to the second temperature point. The larger the difference between the two points the more accurate the gain cal will be.

8. Allow 15 to 20 minutes for chamber stabilization.

9. Depress: CALB1, access code, standard reading « Calibrates the chamber probe gain
 where
 \[
 B = \text{gain performed at high temperature} \\
 1 = \text{chamber probe}
 \]

10. Depress: CALB2, access code, standard reading « Calibrates the user probe gain
 where
 \[
 B = \text{gain performed at high temperature} \\
 2 = \text{user probe}
 \]

Using chamber probe as an example:

 The chamber is set to the first temperature point of 0°C. After stabilization the standard reads 2°C. Depress CALA1, 9, 2 « The offset is calculated and chamber probe is reset to 2°C. The top line on the front panel display “chamber” now reads 2°C. The top line on the front panel display “chamber” now reads 2°C. The chamber is set to the second temperature point of 100°C. After stabilization the standard reads 101°C. Depress CALB1, 101 « The gain is calculated and chamber probe is reset to 101°C. The top line on the front panel display “chamber” now reads 101°C.

RESTORING DEFAULT CALIBRATION VALUES

To return chamber to factory default calibration values, perform the following:
(Note: This can only be performed on software version 3.x and higher.)

```
green SHIFT CAL red SHIFT C,9 ENTER                     Clears calibration values for both channels

green SHIFT CAL ENTER                                    Enter into CAL menu. Probe types currently configured
                                                          will display briefly. Top line is Chamber probe and
                                                          bottom line is User probe.

CALIBRATE PROBES YES/NO?                                  YES ENTER

ENTER CAL ACCESS CODE?                                     9 ENTER

CAL CHAMBER PROBE YES/NO?                                 YES ENTER

The following probes types will now display in the following order:
   RTD .385
   RTD .392
   J Thermocouple
   K Thermocouple
   Diode

Select NO ENTER will advance and display the next probe type.
Select YES ENTER when the correct probe type is displayed.

PROBE AT 0 DEG C YES/NO?                                   NO ENTER
   This restores default calibration value.
```
DESIRE SCALE?
1=C 2=F 3=K
Choose corresponding number then ENTER

CAL USER PROBE YES/NO? YES ENTER

The available probe types will now display in the following order:
RTD .385
RTD .392
J Thermocouple
K Thermocouple
T Thermocouple
Diode

Select NO ENTER will advance and display the next probe type.
Select YES ENTER when the correct probe type is displayed.

PROBE AT 0 DEG C YES/NO? NO ENTER
this restores default calibration value

DESIRE SCALE?
1=C 2=F 3=K
Choose corresponding number ENTER

Controller will automatically exit the CAL menu. Restoration of default calibration values is now complete.
SECTION 4. INPUT/OUTPUT INTERFACES

The Model EC1x contains three types of interfaces. The first type of interface is the COMMUNICATION interface. The RS232/422, GPIB, and the front panel are classified as communication interfaces since these interfaces may send/receive commands and data to the controller. The second class of interface is the AUXILIARY interface. Auxiliary interfaces consist of 5 on/off event outputs, 8 on/off inputs, up to 4 analog outputs and inputs and a digital parallel I/O port. The third is the PROCESS interface type. The process interfaces consist of the two sensor input channels and the outputs that control the process. Process control outputs consist of 3 on/off outputs, and the on/off fail-safe input.

COMMUNICATION INTERFACES

FRONT PANEL INTERFACE

The 32 key - 32 alphanumeric control panel interface permits Model EC1x operation in a stand-alone configuration. The control panel may request or send information from/to an AUXILIARY I/O interface by issuing the appropriate IN or OUT instructions.

GPIB (IEEE-488) PARALLEL INTERFACE

The Model EC1x incorporates a standard IEEE-488 GPIB interface for communication with a host computer. The bus address and timeout values can be set from the local control panel during the SDEF menu. The Model EC1x functions as a Talker/Listener on the bus and provides an SRQ/serial poll and parallel poll interrupt capability. The GPIB interface may request or send information from/to another I/O device interface by issuing the appropriate IN or OUT instructions. The signal pin assignments are as follows.

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL</th>
<th>PIN #</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO1</td>
<td>13</td>
<td>DIO5</td>
</tr>
<tr>
<td>2</td>
<td>DIO2</td>
<td>14</td>
<td>DIO6</td>
</tr>
<tr>
<td>3</td>
<td>DIO3</td>
<td>15</td>
<td>DIO7</td>
</tr>
<tr>
<td>4</td>
<td>DIO4</td>
<td>16</td>
<td>DIO8</td>
</tr>
<tr>
<td>5</td>
<td>EOI</td>
<td>17</td>
<td>REN</td>
</tr>
<tr>
<td>6</td>
<td>DAV</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>NRFD</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>NDAC</td>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>IFC</td>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>SRQ</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>ATN</td>
<td>23</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>SHIELD</td>
<td>24</td>
<td>GND LOGIC</td>
</tr>
</tbody>
</table>

RS232/422 SERIAL INTERFACE

The Model EC1x provides an RS-232 or RS-422 serial interface for communication with a host computer that is selectable via the SDEF menu. The RS232/422 serial interface may request or send information from/to an AUXILIARY I/O interface by issuing the appropriate IN or OUT instructions. The signal pin assignments are as follows.
RS232/422 SERIAL INTERFACE (DB25)

<table>
<thead>
<tr>
<th>PIN#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 7, 13, 15, 17</td>
<td>GROUND</td>
</tr>
<tr>
<td>2</td>
<td>TXD RS-232 Transmitted Data from Model EC1x</td>
</tr>
<tr>
<td>3</td>
<td>RXD RS-232 Received Data to Model EC1x</td>
</tr>
<tr>
<td>6</td>
<td>DSR RS-232 Data Set Ready</td>
</tr>
<tr>
<td>20, 24</td>
<td>DTR RS-232 Data Term Ready</td>
</tr>
<tr>
<td>12</td>
<td>+TXD RS-422 Tran Data +</td>
</tr>
<tr>
<td>10</td>
<td>-TXD RS-422 Tran Data -</td>
</tr>
<tr>
<td>23</td>
<td>+RXD RS-422 Received Data +</td>
</tr>
<tr>
<td>9</td>
<td>-RXD RS-422 Received Data -</td>
</tr>
<tr>
<td>22</td>
<td>+CTS RS-422 Clear to Send +</td>
</tr>
<tr>
<td>11</td>
<td>-CTS RS-422 Clear to Send -</td>
</tr>
<tr>
<td>24</td>
<td>+DTR RS-422 Data Term Ready +</td>
</tr>
<tr>
<td>25</td>
<td>-DTR RS-422 Data Term Ready -</td>
</tr>
</tbody>
</table>

AUXILIARY I/O INTERFACES

BIT I/O INTERFACE

The auxiliary interface is used by the chamber to control heating, cooling, and fan circuits and for the fail-safe input. The EC1xHA models also use the F3 output (address 2) to control the ambient blower. Unused inputs/outputs are available to the user internal to the controller section chassis. The Auxiliary I/O interface contains 8 drivers for controlling TTL or solid state relays and 8 inputs for sensing TTL or dry relay contacts and a fail-safe input. Outputs are open collector 50 volt 100 mA and are designated F1 thru F8. Pull up resistors of 270 OHM, connected to +5Volts are provided on signals designated P1 thru P8. Sense inputs are designated G1 thru G8. The signal pin assignments are as follows.

BIT I/O INTERFACE (26 PIN IDC)

<table>
<thead>
<tr>
<th>PIN#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4, 6, 8, 10, 12, 14, 16</td>
<td>F1 thru F8 outputs</td>
</tr>
<tr>
<td>18, 20, 22, 24, 26, 25, 23, 21</td>
<td>P1 thru P8 pull ups</td>
</tr>
<tr>
<td>19, 17, 15, 13, 11, 9, 7, 5</td>
<td>G1 thru G8 Inputs</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>1</td>
<td>FAIL-SAFE SIGNAL</td>
</tr>
</tbody>
</table>

In the Model EC1x, the auxiliary port interfaces to the I/O PC board which drives the heaters, blowers and coolant supply valve. An 8 position terminal block, located within the controller section chassis, has one spare input for sensing.

The input can be read between terminals 3 (ground) and 4 (auxiliary input) on terminal block B. To read input, use command IN0:0,Im. Im will read 1 if input is closed (TTL Low) and 0 if input is open (TTL High).
Additionally, there are two pairs of pads located on I/O board labeled –OUT2+ and –OUT4+.

Auxiliary Output 2 and 4

If no ambient blower is installed, the user can use auxiliary digital output 2 by using the command:

- \text{OUT0}:2,1 \quad \text{to turn on auxiliary output 2}
- \text{OUT0}:2,0 \quad \text{to turn off auxiliary output 2}

If no gas purge with needle valve is installed, the user can use auxiliary digital output 4 by using the command:

- \text{OUT0}:4,1 \quad \text{to turn on auxiliary output 4}
- \text{OUT0}:4,0 \quad \text{to turn off auxiliary output 4}

The following figures provide the aux port logic and the I/O board logic.

EC1x ver. 0517

Pg 55
BIT I/O PORT LOGIC
DIGITAL PARALLEL USER I/O INTERFACE

The digital parallel I/O interface permits the Model EC1x to easily interface with either Sun Systems test accessories or custom test accessories which you may require. The interface consists of a multiplexed 16 bit address and an 8 bit data bus. Control signals for upper and lower address and data permit de-multiplexing of the 8 bit multiplexed bus. The pin assignments are as follows.

USER PARALLEL I/O INTERFACE (26 PIN IDC)

<table>
<thead>
<tr>
<th>PIN#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4, 6, 8, QAD7 thru QAD0 - Multiplexed 8 bit</td>
<td></td>
</tr>
<tr>
<td>10, 12, 14, 16 Address/data bus (2)=QAD7...(16)=QAD0</td>
<td></td>
</tr>
<tr>
<td>18 QE_U - Active high either reads data from a device or writes data to a device depending on the state of the Q_R/W signal. During a WRITE operation, data is stable for the duration of QE_U. During a READ operation, the device must place data on the data bus, QAD7-0, within 1micro second after QU_E going active high.</td>
<td></td>
</tr>
<tr>
<td>20 Q_R/W - High defines a READ from a device, Low defines a WRITE to a device.</td>
<td></td>
</tr>
<tr>
<td>22 Q_ASM - Active high indicates that the data present on QAD7-0 is the upper 8 bits of a 16 bit address field.</td>
<td></td>
</tr>
<tr>
<td>24 Q_ASL - Active high indicates that the data present on QAD7-0 is the lower 8 bits of a 16 bit address field.</td>
<td></td>
</tr>
<tr>
<td>26 Reserved.</td>
<td></td>
</tr>
<tr>
<td>11, 13, 15, 17, GROUND</td>
<td></td>
</tr>
<tr>
<td>19, 21, 23, 25</td>
<td></td>
</tr>
<tr>
<td>1, 3, 5, 7, 9 V UNREG - Unregulated DC voltage provide as operating power for test accessories. The nominal voltage is 24VDC with a tolerance of +/- 20%. The maximum current capability of the voltage source is 700mA max with active current limit circuitry.</td>
<td></td>
</tr>
</tbody>
</table>

The control panel, Local Programs, GPIB and RS232/422 communication interfaces can read and write to devices attached to the USER parallel I/O interface by issuing the following device I/O commands.

USER PARALLEL I/O COMMANDS

OUT1:[address], [data] Where address may be any 16 bit integer and data may be an 8 bit value or the lower 8 bits of a 16 bit integer.

IN1:[address], Im Where address may be any 16 bit integer.

The user bus logic, bus timing diagram and an example circuit follow
TIMING DIAGRAM

USER BUS TIMING

(WRITE)

QAD (0-7)
 MS ADDRESS LS ADDRESS DATA OUT
 \[T5 \] \[Tn-1 \]
 0 1 0

R/W
 0

ASM
 \[Tap \]
 1 0

ASL
 \[Tap \]
 1 0

E_U
 \[Tap \]
 1 0

(READ)

QAD (0-7)
 MS ADDRESS LS ADDRESS DATA IN
 \[TH \]
 \[Ta \]
 0 1 0

R/W
 1 0

ASM
 \[Tap \]
 1 0

ASL
 \[Tap \]
 1 0

E_U
 \[Tap \]
 1 0

Ta=6 uS MIN
Trh=3 uS MIN
Tao=48 uS
Tep=6 uS

To=3 uS
0 < Th < 2 uS
Tep=11 uS

SUN ELECTRONIC SYSTEMS Inc.
SAMPLE USER CIRCUIT
MATRIX SYSTEM CONTROLLED BY DIGITAL PARALLEL USER I/O INTERFACE

Sun Systems' automatic switching matrix is designed to provide automated temperature testing of electronics components such as resistors, diodes, capacitors, 3 and 4 lead transistors, etc. The matrix consists of the control logic and switching built on the chamber door and the cards that hold the components under test inside the chamber. If you wish to receive detailed information on the MATRIX system please call and ask for the data sheet. The MATRIX system is controlled via the chamber controller's user port. For 4 wire Kelvin measurements, one of a hundred and sixty devices can be selected. For 6 or 8 wire Kelvin measurements, one of eighty devices can be selected. The OUT command is provided to drive the MATRIX, see SECTION 5.

MATRIX FUNCTIONAL BLOCK DIAGRAM
MATRIX USER INTERFACE

NOTE: For long relay life, remove user drive before selecting another device for measurement.

4 WIRE MEASUREMENTS ARE PERFORMED USING #1 through #4
8 WIRE MEASUREMENTS ARE PERFORMED USING #1 through #8
ANALOG I/O INTERFACE

The analog I/O interface is useful for interfacing with sensors, instrumentation and control devices. A communication interface may output 8 bit data to up to 4 different channels of analog output designated channel AO(0-3). In addition, a communication interface may read an 8 bit value corresponding to the analog voltage present on up to 4 channels of analog input designated channels AN0-3. In the SDEF menu, analog output channels may be independently defined as unipolar with a 0 to +5V output range. Analog output channels A and B can be configured to drive a chart recorder. Output channel A can chart the chamber probe reading and output channel B can chart the user probe reading. Analog input channels accept a 0 to +5V input and AN0 may be jumper configured to accept 0-20mA current input. A 220 OHM resistor pulled high to +12VDC is provided for supplying 0-20mA passive devices on signal AN0+. The D/A data is 0 at low level and 255 at high level. The pin assignments for the analog I/O interface are as follows.

ANALOG I/O INTERFACE (J2,DB15)

<table>
<thead>
<tr>
<th>PIN#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AN0 - Analog Input Channel 0</td>
</tr>
<tr>
<td>2</td>
<td>AN1 - Analog Input Channel 1</td>
</tr>
<tr>
<td>3</td>
<td>AN2 - Analog Input Channel 2</td>
</tr>
<tr>
<td>4</td>
<td>AN3 - Analog Input Channel 3</td>
</tr>
<tr>
<td>5</td>
<td>AO_0 - Analog Output Channel A</td>
</tr>
<tr>
<td>6</td>
<td>AO_1 - Analog Output Channel B</td>
</tr>
<tr>
<td>7</td>
<td>AO_2 - Analog Output Channel C</td>
</tr>
<tr>
<td>8</td>
<td>AO_3 - Analog Output Channel D</td>
</tr>
<tr>
<td>9</td>
<td>AN0+ - 220 OHM Pull Up Resistor to +12VDC</td>
</tr>
<tr>
<td>10, 11</td>
<td>GROUND</td>
</tr>
<tr>
<td>12, 13, 14, 15</td>
<td>No connection</td>
</tr>
</tbody>
</table>

Communication interfaces may read and write data from/to the analog I/O interface by issuing the following instructions.

ANALOG I/O INTERFACE I/O COMMANDS

OUT3:[analog output channel number, 0-3], [8 bit data value, 0-255]

IN3:[analog input channel number,0-3], Im (Where Im = 0 at low level, Im = 32,767 at full scale.)

The analog port schematic follows:
PROBE INTERFACE with connection diagram

The dual probe interface on the Model EC1x accepts several different types of sensors. The type of probe and the calibration for the probe selected is accomplished by running the CAL menu from the local control panel, refer to Section 3. The following represents the connections to the probe connector located inside the controller section for either the CHAMBER channel or the USER channel. The chambers are equipped with standard K thermocouples.

<table>
<thead>
<tr>
<th>PROBE TYPE</th>
<th>CONNECTION INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 WIRE 100 ohm RTD</td>
<td>PIN 2 - RTD OUT, PIN 4 - RTD IN (jump 3 to 4)</td>
</tr>
<tr>
<td>3 WIRE 100 ohm RTD</td>
<td>PIN 2 - RTD OUT, PIN 3, 4 - RTD IN</td>
</tr>
<tr>
<td>4 WIRE RTD</td>
<td>PIN 1, 2 - RTD OUT, PIN 3, 4 - RTD IN</td>
</tr>
<tr>
<td>THERMOCOUPLE</td>
<td>PIN 2 - +LEAD, PIN 3 - -LEAD</td>
</tr>
<tr>
<td>DIODE TRANSISTOR SENSOR</td>
<td>NPN PIN 2 = COLLECTOR BASE, PIN 3,4 EMITTER</td>
</tr>
<tr>
<td>VOLTAGE</td>
<td>PIN 1 - +LEAD, PIN 4 - -LEAD</td>
</tr>
<tr>
<td>CURRENT</td>
<td>PARALLEL CURRENT SOURCE WITH RESISTOR AND RUN AS VOLTAGE</td>
</tr>
</tbody>
</table>

Chamber Probe (loc. PC1) and User Probe (loc. PU1) Connector Wiring Diagram, Rev G Ver. 10.xx

Ch#3 / Ch#4 Probe (loc. PX1) Connector Wiring Diagram, Rev G Ver 10.xx

Note: Beginning with Rev G, Version 10.xx, the EC1x now provides access to two additional “read only” probe connections, Channel #3 and Channel #4. These channels are for monitoring only (no control). See SECTION 5 “Detailed Command Descriptions”
Note: Chambers running software versions prior to Ver. 10.xx will incorporate a larger, 8 position connector on the Chamber and User Probes. The following is a wiring diagram.

Chamber Probe and User Probe Connector Wiring Diagram (Revisions Prior to Rev G, Ver. 10.xx)

PROCESS CONTROL OUTPUTS

See BIT I/O section under AUXILIARY I/O in section 4.
SECTION 5. DETAILED COMMAND DESCRIPTIONS

AB

Function: Controls the ambient air blower

Syntax: AB=n.n Turns on ambient blower for n.n minutes
 AB=n.n,m.m Turn on ambient blower for n.n minutes or until m.m
 degrees, set temperature, is reached

Description:
If in the SDEF Menu, AMB_BLOWER_COOL? is set to NO then:
 AB=n.n command automatically disables heating and cooling during the time that the blower
 is on. When encountered in a local program, program execution will be suspended until the blower
 has finished then the program will continue at the next line. A command error will result if the chamber
 temperature is less than +25ºC since the ambient blower is to be used to cool the chamber only.
 AB=n.n,m.m command turns on the blower until the time limit expires or until the set
 temperature is reached. m.m must be greater than +25ºC and the chamber temperature must be
 greater than m.m when the command is executed. Heating is disabled during the time the command
 is active. You must disable cooling if none is desired.

If in the SDEF Menu, AMB_BLOWER_COOL? is set to YES:
and the AB command is used to enable the ambient air blower, then the AB command gets
precedence. However, if you enable the air blower using the OUT0:2,1 command the
AMB_BLOWER_COOL gets precedence and will automatically shut the air blower off if the difference
between the chamber temperature and the set point is less than 1ºC.

Restrictions: This command is for EC1xHA Models which incorporate the ambient blowers.

See Also: OUT command and AMB_BLOWER_COOL? in the SDEF MENU

Example:
Local Program example, using AB=n.n where n.n is minutes.
 RATE=20 Go to +100º for 12 minutes
 WAIT=12
 SET=100
 AB=5 Turn on ambient blower for 5 minutes
 WAIT=10
 SET=-25 Then go to -25º for 10 minutes
etc.

Local Program example, using AB=n.n, m.m
 RATE=20
 WAIT=0:5:30
 SET=125 Go to +125º for 5 min 30 sec
 AB=5,30 Turn on blower for 5 minutes or until +30º is reached.
 WAIT=30
 SET=-55 Go to -55º for 30 minutes
etc.
BKPNT

Function: Local program breakpoint or pause command

Syntax:
- `BKPNTnnn` Display number nnn at breakpoint
- `BKPNTIm` Display I variable value at breakpoint

Description:
The breakpoint command allows for local program operation to be suspended until the ENTER key is depressed on the front panel display or until the remote controller issues a BKPNTC command. This command permits program debugging by providing convenient pauses in local program execution such that an operator may examine local program performance and is also useful when a host controller may wish to perform I/O at a point in the local program. One form of the breakpoint command displays a number on the front panel display when encountered which is useful for identifying different breakpoints within a program. The other form of the breakpoint command displays the value of one of the I variables, 0-9, which is useful for breakpoints that are placed within FOR/NEXT loops.

Restrictions: Breakpoint values displayed on front panel display. To read over remote bus issue BKPNT? command.

See Also: BKPNT?, BKPNTC

Example: Editing from the local keyboard
- `EDIT#0«` Edit program #0
- `END` Controller response
- `BKPNT100«` Set breakpoint 100
- `END` Controller response
- `FOR I2=1, 10«` Begin FOR/NEXT loop
- `END` Controller response
- `BKPNTI2«` Set breakpoint for I variable #2
- `END` Controller response
- `NEXTI2«` End FOR/NEXT loop
- `END` Controller response
- `END«` Terminate program entry
BKPNTC

Function: Remote bus command to continue from breakpoint

Syntax: BKPNTC

Description:
When the BKPNT interrupt is enabled by the SINT menu and a local program is started via a remote RUN command, then when a BKPNT is reached during local program execution the breakpoint interrupt is sent to the appropriate remote bus. The host controller upon receiving the breakpoint interrupt may issue a BKPNT? command to read the value of the breakpoint issue commands and then issue a BKPNTC to continue local program execution.

Restrictions: Remote only command

BKPNT?

Function: Remote bus command to read value of breakpoint

Syntax: BKPNT?

Description:
When the BKPNT interrupt is enabled by the SINT menu and a local program is started via a remote RUN command, then when a BKPNT is reached during local program execution the breakpoint interrupt is sent to the appropriate remote bus. The host controller upon receiving the breakpoint interrupt may issue a BKPNT? command to read the value of the breakpoint and issue a BKPNTC to continue local program execution.

Restrictions: Remote only command
C

Function: Set or examine the current set temperature in deg C

Syntax:
- `nnn.nC` Set current set temperature
- `C` Examine current set temperature

Description:
The C command is a TC01 controller compatible command which either sets the current set temperature or examines the controller for the current set temperature. The set or response is in degrees centigrade always. The C command returns with a value of -1999 if the current set temperature is equal to none. Use the more general set command if possible.

Restrictions: Remote interface command only.

See Also: SET

Example:
- `150.0C` Set current set temperature to 150.0°C
- `C` Send command to examine current set temp.
- `150.0` Controller response, temp. = 150°C
- `SET?` Examine current set temp with SET command
- `150.0` Controller response

C3? & C4?

Function: Examine channel 3 or channel 4 temperature

Syntax:
- `C3?`, `C4?`

Description:
The C3? or C4? commands provide the means to read the present value of channel #3 or Channel #4 either through a remote interface or from the front panel. This value is normally displayed on the second line of the front panel LCD display.

Restrictions: Monitoring only, no control. Only supports K T/C. Only available on software versions 10.xx and higher.

Example:
- `C3?` Read channel #3 probe
- `TC_3=25` Controller response, 25.0 units
- `C4?` Read channel #4 probe
- `TC_4=25` Controller response, 25.0 units
CALAx

Function: The CALAx command allows for an offset adjustment on the measurement reading of channel x.

Syntax: `CALAx, access code, standard reading`

where
- `x`: 1 or 2 (1 is chamber probe, 2 is user probe)
- `access code`: Defined by user (default = 9)
- `standard reading`: Known measurement value

Description:
The CALAx command allows user to offset the measurement value of channel x. See CAL TO A STANDARD COMMANDS, Section 3, for the actual calibration procedure. The CALAx command may be issued after an initial calibration sequence to fine tune the calibration of a particular channel.

See Also: CALC, CALBx, See Section 3, CAL TO A STANDARD COMMANDS

Example:
Offset adjustment of sensor #1:
Sensor #1 is placed at 0 ºC
After stabilizing, sensor #1 reads 0.5 ºC
The command `CALA1,9,0.0` is issued.
The sensor now reads 0 ºC.

CALBx

Function: The CALBx command allows for a gain adjustment on the measurement reading.

Syntax: `CALBx, access code, standard reading`

where
- `x`: 1 or 2 (1 is chamber probe, 2 is user probe)
- `access code`: Defined by user (default = 9)
- `standard reading`: Known measurement value

Description:
The CALBx command allows users to modify the gain of channel x. See CAL TO A STANDARD COMMANDS, Section 3, for the actual calibration procedure. This calibration command must only be issued after a CALA has been done on the channel.

See Also: CALC, CALAx, See Section 3, CAL TO A STANDARD COMMANDS

Example:
Gain adjustment of sensor #1:
Sensor #1 is placed at 100 ºC.
After stabilizing, sensor #1 reads 97.5 ºC.
The command `CALB1,9,100.0` is issued.
The sensor now reads 100.0 ºC.
CALC

Function: The CALC command allows the user to clear all offset and gain adjustments

Syntax:
CALC, access code
where access code is Defined by user(default=9)

Description:
The CALC command allows users to clear both of the EC1x's channels standard gain and offset adjustments. See the CAL TO A STANDARD COMMANDS section for the actual calibration procedure.

Warning: The CALC command should only be used prior to calibration of both sensors on the EC1x. All cal to a standard adjustments on channels 1 and 2 will be lost.

See Also: CALAx, CALBx, See Section 3, CAL TO A STANDARD COMMANDS

Example:
CALC,9 All gain and offset adjustments cleared for both channels

CALC1

Function: The CALC1 command allows users to clear all offset and gain adjustments

Syntax:
CALC1, access code
where access code is defined by user(default=9)

Description:
The CALC1 command allows users to clear the EC1x's channel #1 standard gain and offset adjustments. See the CAL TO A STANDARD COMMANDS section for the actual calibration procedure.

Warning: The CALC1 command should only be used prior to calibration of channel #1 on the EC1x. All cal to a standard adjustments on channel #1 will be lost.

See Also: CALC, CALC2, CALAx, CALBx, See Section 3, CAL TO A STANDARD COMMANDS

Example:
CALC1,9 All gain and offset adjustments cleared for channel #1
CALC2

Function: The CALC2 command allows users to clear all offset and gain adjustments

Syntax:
```
CALC2, access code
```
where access code is defined by user (default=9)

Description:
The CALC2 command allows users to clear the EC1x’s channel #2 standard gain and offset adjustments. See the CAL TO A STANDARD COMMANDS section for the actual calibration procedure.

Warning: The CALC2 command should only be used prior to calibration of channel #2 on the EC1x. All cal to a standard adjustments on channel #2 will be lost.

See Also: CALC, CALC1, CALAx, CALBx, See Section 3, CAL TO A STANDARD COMMANDS

Example:
```
CALC2,9
```
All gain and offset adjustments cleared for channel #2

CHAM?

Function: Examine current chamber temperature

Syntax:
```
CHAM?
```

Description:
The CHAM command provides the means for a remote interface to read the present value of the chamber probe. This value is normally displayed on the first line of the front panel LCD display. The units for the chamber probe are set in the CAL menu for °F, °C, or °K.

Restrictions: Remote Interface command only.

See Also: T, UCHAN, TEMP

Example:
```
CHAM?«
```
Read chamber probe
```
25.0
```
Controller response, 25.0 units
COFF

Function: Disable chamber cooling
Syntax: COFF

Description: The COFF command permits a remote interface to disable chamber cooling by the controller. The front panel COOL switch also disables controller cool function when depressed if cooling was enabled. When editing local programs from the front panel keyboard, depressing the COOL switch on the front panel enters either CON or COFF. If the opposite action is desired, cancel the entry and re-enter to get the correct action. All local programs default to CON at the beginning.

Restrictions: None

See Also: CON, HOFF, HON

Example: COFF « Disable chamber cooling

CON

Function: Enable chamber cooling
Syntax: CON

Description: The CON command permits a remote interface to enable chamber cooling operation. The COOL switch located on the front panel can also enable chamber cooling operation if depressed when cooling is disabled. When editing local programs from the front panel keyboard, depressing the COOL switch on the front panel enters either CON or COFF. If the opposite action is desired, cancel the entry and re-enter to get the correct action. All local programs default to CON at the beginning.

Restrictions: None

See Also: COFF, HON, HOFF

Example: CON « Enable chamber cooling operation
CSET

Function: Examine the present control value.

Syntax: CSET?

Description: The CSET command allows for examining the present temperature that the controller is attempting to control to. During ramping, this value is alternately displayed with the USER probe temperature on LINE2 of the front panel LCD display.

Restrictions: None

See Also: TEMP?, UCHAN?

Example: assumes scale in degrees C
RATE=10« Define temperature segment, RATE=10°C/min
WAIT=30« Wait=30 min.
TEMP?« Examine present temperature
25.0 Controller response, 25.0°C
SET=35.0« Set new final temperature, 35.0°C
Wait 30 seconds
CSET?« Examine present ramp target temperature
30.0 Controller response, 30.0°C

DELL

Function: Delete current line during local program edit

Syntax: DELL

Description: The delete line (DELL) command allows for deleting program lines during local program editing on the front panel keyboard. The line currently displayed will be deleted when the DELL command is entered.

Restrictions: Local front panel command only

See Also: DELP

Example: EDIT#2« Edit local program #2
GOSUB#0 Controller response, first line of LP
[DOWN -ARROW] Use up/down arrows for scrolling LP
BKPN1 Controller response
DELL« Delete breakpoint command
GOSUB#5 Controller response, next line of program
DELP

Function: Delete or clear local program

Syntax: DELPm or DELP#m

Description: The delete program command allows for deleting, which in this case is the same as clearing, a single local program defined by the variable m, where m is in the range of 0 to 9. Programs may be deleted either from the local front panel or from a remote interface. Before using the STORE command from a remote interface, the local program selected, 0 through 9, must be deleted if any commands are present in that particular local program.

Restrictions: None

See Also: DELL, STORE

Example: from a remote interface
- DELP#0« Clear local program #0
- STORE#0« Prepare controller for accepting commands
- *** Send local program commands
- END« Terminate local program download

DEVL

Function: Set or examine the deviation limit

Syntax: DEVL=nnn.n[u] Set deviation limit
DEVL? Examine deviation limit

Description: The DEVL command sets the deviation limits for the chamber probe in default units or optional u units. If the deviation limit interrupt is enabled in the SINT menu and the chamber probe temperature varies by more than the set limit, an interrupt will be generated to the active remote interface.

Restrictions: Deviation Limit range is between 0.1 and max temp.

See Also: UTL, LTL, SINT Menu

Example: if SCALE#1=C
- DEVL=2.5« Set deviation limit to 2.5°C
- DEVL?« Examine deviation limit
- 2.5 Controller response, 2.5°C
- RATE=30« Define temp. segment
- WAIT=03:00:00« Wait for 3 hours
- SET=-55.0« Set final temp. to -55.0°C

If after 1 hour, the chamber runs out of coolant supply and chamber temperature starts to rise, and if deviation interrupts are enabled in the SINT menu, a deviation interrupt will be sent to the active remote interface.
EDIT

Function: Edit local program from the local keyboard.

Syntax: EDITm or EDIT#m

Description: The EDIT command allows for program loading and editing from the local keyboard. A local program, specified by m in the range of 0 to 9, may be edited by using the up and down arrows, delete line (DELL) command or by entering new commands which are placed in front of the command presently displayed on the front panel LCD display. Local program editing is terminated by entering the END command.

Restrictions: Local keyboard command only.

See Also: STORE, LIST, END

Example: This example illustrates entering and editing a local program from the front panel keyboard. The local program consists of a call to LP#2, a breakpoint which displays the number 1, and a call to LP#5.

```
EDIT#0« Edit local prog. #0
END Controller response on LCD display
GOSUB#2« Enter prog. call to local prog #2
END Controller response
GOSUB#5« Enter prog. call to local prog #5
END Controller response
[UP ARROW]« Scroll up
GOSUB#5 Controller response
BKPNT1« Insert breakpoint between calls to LP#2 and LP#5
GOSUB#5 Controller response
END« Enter end local program editing command
```
END

Function: Terminate local program editing or remote program downloading.

Syntax: END

Description: The END command terminates program editing when editing local programs from the local keyboard and terminates remote program downloading when using the STORE command from a remote host computer.

Restrictions: None

See Also: EDIT, STORE

Example: This example illustrates entering a local program from the front panel keyboard. The local program consists of a call to LP#2, a breakpoint which displays the number 1, and a call to LP#5.

```
EDIT#0« Edit local prog. #0
END Controller response on LCD display
GOSUB#2« Enter prog. call to local prog #2
END Controller response
BKPNT1« Enter breakpoint between calls to LP#2 and LP#5
END Controller response
GOSUB#5« Enter prog. call to local prog #5
END Controller response
END« End local program editing
```
FOR/NEXT

Function: Loop definition command for local programming

Syntax:
- FOR Im = <Beginning Value>,<Ending Value> or
- FOR Im = <Beginning Value>,<Ending Value>, + or
- FOR Im = <Beginning Value>,<Ending Value>, -
 NEXT Im

Description:

The FOR/NEXT loop command provides looping capability for local program operation. Commands contained within the boundaries between the FOR statement and the NEXT statement are repeated as defined by the FOR statement. The beginning or ending value may be any integer value (-32767 to +32767) or an I variable value (I0 to I9). The FOR/NEXT loop either increments the beginning value until the beginning value is equal to or greater than the ending value or decrements the beginning value, when the minus option is used, until the beginning value is equal to or less than the ending value. The number of loop executions is equal to the absolute value of the ending value minus the beginning value. Without regard to the beginning and ending values, the loop is always executed one time. FOR/NEXT loops may be nested four deep when considering the first loop as nest#1.

Restrictions: This command is only valid in the EDIT mode which is used to create a local program.

See Also:
- “Sample Local Program” in Section 2
- STORE
- GOSUB
- I VARIABLES

Example:

```
DELP#2  Clear program #2
EDIT#2  EDIT local program #2
FOR I5=1,5 « FOR I variable #5, step 1,2,3,4
FOR I2=5,I5,- « FOR I variable #2, 5, I variable #5, decrement
  Step 5,4,3,2 (Pass 1)
  Step 5,4,3 (Pass 2)
  Step 5,4 (Pass 3)
  Step 5 (Pass 4)
BKPNT I2« Set breakpoint, display I variable #2
NEXT I2« End FOR/NEXT nest #2
NEXT I5« End FOR/NEXT nest #1
END«   End program store
RUN#2  Run program #2
```

When the program is run, the breakpoint value will display the step sequence for the FOR/NEXT I2 variable loop. The ENTER key must be pressed from the front panel or the BRKPTC command must be entered remotely to continue the program when a breakpoint is encountered.
GOSUB

Function: Execute local program “m” as a subroutine

Syntax: GOSUBm or GOSUB#m

Description:
The GOSUB command allows local programs to be called by other local programs as subroutines. At the end of a local program called by a GOSUB command, execution commences at the command following the GOSUB command in the calling program. Nesting is supported for four levels with the top level program as nest#1. I variables are global to all local programs.

Restrictions: This command is only valid in the EDIT mode which is used to create a local program.

See Also: “Sample Local Program” in Section 2
STORE
FOR/NEXT

Example:
FOR I3=0,10
GOSUB#0
GOSUB#1
NEXTI3
END

HOFF

Function: Disable chamber heating

Syntax: HOFF

Description:
The HOFF command permits a remote interface to disable chamber heating by the controller. The front panel HEAT switch also disables controller heat function when depressed if heat was enabled. When editing local programs from the front panel keyboard, depressing the HEAT switch on the front panel enters either HON or HOFF. If the opposite action is desired, cancel the entry and re-enter to get the correct action. All local programs default to HON at the beginning.

Restrictions: None

See Also: CON, COFF, HON

Example: HOFF « Disable chamber heating
HON

Function: Enable chamber heating

Syntax: HON

Description: The HON command permits a remote interface to enable chamber heating operation. The HEAT switch located on the front panel can also enable chamber heating operation if depressed when heating is disabled. When editing local programs from the front panel keyboard, depressing the HEAT switch on the front panel enters either HON or HOFF. If the opposite action is desired, cancel the entry and re-enter to get the correct action. All local programs default to HON at the beginning.

Restrictions: None

See Also: COFF, CON, HOFF

Example: HON« Enable chamber heating operation

I VARIABLES

Function: Set or examine I variables.

Syntax:
- Im= <value> Set Im equal to value
- Im= Im + <value> Set Im equal to sum of values
- Im= Im - <value> Set Im = to difference of values
- Im? Examine I variable m

Description: I variables are used in local programs for loop control and general purpose Integer arithmetic. A value may be any integer in the range of +32767/-32767 or another I variable. The controller supports 10 I variables, where “m” ranges from 0 to 9. I variables are global between all local programs and as such, care should be taken to insure that the same I variable is not used in two different applications within any active group of local programs.

Restrictions: None

See Also: FOR/NEXT, IN, OUT, BKPNT

Example:
- I0=52« Set I variable #0 to 52
- I2=10« Set I variable #2 equal to I variable #0
- I5=I0-9« Set I var.#5 = I var.#0- 9 = 43
- I6=I0+I5« Set I var.#6 = I var.#0 + I var.#5 = 95
- I6?« Examine I variable #6
- 95 Controller response
IN

Function: Input data from the Bit I/O, USER bus, or A/D port

Syntax:

```
IN<device number>:<address>,I
```

where `<device number>` is:

- 0 for Bit I/O
- 1 for USER bus
- 3 for Analog port

Description:

The IN command allows data read capability from either the Bit I/O port, USER bus, or analog to digital convertors. Data values read from a particular device are stored in I variables. For proper operation of each device interface consult the appropriate section describing the device in full.

Restrictions: None

See Also: OUT, I variables

Example:

- `IN0:5,I2` — Read Bit I/O bit 5, store in I var.#2
- `IN1:7,I2` — Read USER bus, address 7, store in I var.#2
- `IN1:$F,I2` — Read USER bus, addr. HEX F, store in I2
- `IN3:2,I2` — Read A/D channel 2 into I var.#2

LIST

Function: List a local program from a remote interface

Syntax:

```
LISTm or LIST#m
```

Description:

The LIST command permits a remote interface to upload a local program from the controller. This command allows a remote operator to verify the results of a STORE instruction, which downloads programs to the controller. In addition, some communication programs allow for capturing data to text files. In this manner, local programs can be maintained on a personal computer and downloaded or uploaded if required.

Restrictions: Remote interface command only

See Also: STORE

Example:

- `DELP#0«` — Clear local program #0
- `STORE#0«` — Ready controller for local program download
- `***` — Send local program
- `END«` — End download
- `LIST#0«` — Request upload of LP#0
- `***` — Local program displayed
LLO

Function: RS-232/422 Command to lockout local keyboard

Syntax: LLO

Description: The Local Lockout (LLO) command may be issued from a host processor to lockout the local keyboard. The LLO command only applies to host computers communicating over the RS-232 or RS-422 serial interfaces. Local keyboard function may be unlocked thru the use of the RTL command. Local keyboard lockout operation for host processors communicating over the IEEE-488 interface is a bus interface command. The syntax varies according to the particular host computer.

Restrictions: RS-232/422 remote interface command only. Each host GPIB interface uses unique syntax for local lockout commands.

See Also: RTL

Example: LLO« Lockout local keyboard
RTL« Unlock local keyboard

LTL

Function: Set or examine the lower temperature limit

Syntax: LTL=[-]nnn.n[u] Set LTL, where u=variable units (°C, °F, °K)
LTL? Examine LTL, default units

Description: The LTL command allows for setting the lower temperature limit which the controller will attempt to control. The units for the LTL command are those as selected in the CAL menu for the chamber probe or the optional u units. The optional u units can be accepted remotely only and will be converted automatically to default units.

Restrictions: Temperature values for the LTL command must range between -200°C and the UTL setting.

See Also: UTL

Example: If scale is set to °C
LTL=[-]100.0« Set LTL to -100°C
LTL?« Examine LTL
-100.0 Controller response, -100°C
M

Function: Set or examine the current wait at temperature time.

Syntax:
- `nnn.nM` : Set the temperature segment wait time
- `M` : Examine the current temperature wait time

Description:
The M command is a TC01 controller compatible command which either sets the current temperature segment wait time, sometimes referred as soak period, or allows a remote interface to examine the current setting. When setting wait times, nnn.n represents the wait time in minutes. If wait time is equal to forever, M returns 1999. Use the more general wait command is possible.

Restrictions: Remote command only.

See Also: WAIT

Example:
- `12.1M` : Set wait time for 12.1 minutes
- `M` : Examine wait time
- `12.1` : Response from controller
- `WAIT?` : Examine wait time with WAIT command
- `00:12:06` : Response from controller

OFF

Function: Turn off chamber power

Syntax: OFF

Description:
The OFF command turns off the power to the chamber. As long as the chamber is connected to an appropriate line voltage, the controller in the chamber is still powered on. The OFF command turns off the front panel display, indicators and switch functions, except for the POWER switch. In addition, commands received over the remote interfaces are ignored except for the ON command and the STATUS? command. Depressing the POWER switch when the chamber is ON results in the same function as the OFF command.

Restrictions: Remote interface command only

See Also: ON

Example:
- `OFF` : Turn OFF chamber
ON

Function: Turn on power to chamber

Syntax: ON

Description: The ON command enables power and function of the chamber. When the chamber is plugged in to an appropriate line voltage the controller is powered on and can accept a power on command from either the front panel by depressing the power switch or from a remote interface by using the ON command.

Restrictions: Remote interface command only

See Also: OFF

Example: ON« Turn on chamber power
OUT

Function: Output data to the Bit I/O port, USER bus and/or A/D port. Also turns on/off ambient blower (ambient blower applies to EC1xHA models only).

Syntax: OUT<device number>:<address>,<data>

where <device number> = 0 for BIT I/O, 1 for USER PORT, or 3 for ANALOG PORT

Description: The OUT command permits data to be transferred to an output device such as the Bit I/O port, USER bus or digital to analog convertors. The ambient blower is controlled via the BIT I/O. For a complete description on operating with an I/O device, consult the particular device in Section 4.

Restrictions: None

See Also: IN, AB and AMB_BLOWER_COOL in SDEF Menu for EC1xHA chambers only

Example:
- OUT0:5,1« Set Bit I/O port bit 5
- OUT1:7,0« Output data 0 to address 7 for the USER bus
- OUT1:$20,$0F« Output HEX F to addr. HEX 20, USER bus
- OUT3:2,128« Output 128 to channel 2, D/A port
- OUT0:2,1 Turn on ambient blower
- OUT0:2,0 Turn off ambient blower

Example for Ambient Blower:

Note: Care must be used when using the OUT command to control the blower since there is no chamber temperature checking or heat and cool disable.

\[
\begin{align*}
\text{RATE}=20 \\
\text{WAIT}=10 \\
\text{SET}=100 \\
\text{HOFF} \\
\text{WAIT}=0:0:5 \\
\text{OUT0:2,1} \\
\text{SET}=35 \\
\text{OUT0:2,0} \\
\text{HON} \\
\text{WAIT}=10 \\
\text{SET}=-25
\end{align*}
\]

Go to 100° for 10 minutes
Disable heating
Set a short 5 second wait time
Turn on the blower
Cool to 35 with blower and expectorant
Turn off ambient blower
Enable heating

Also if you enable the air blower using the OUT0:2,1 command while the AMB_BLOWER_COOL is enabled in the SDEF MENU, the AMB_BLOWER_COOL gets precedence and will automatically shut the air blower off if the difference between the chamber temperature and the set point is less than 1°C. See AMB_BLOWER_COOL? in the SDEF MENU.
OUT Cont.

Example for Switching Matrix:

The following commands are provided for selection of components for test via the SUN SYSTEMS matrix. The following commands are sent to the chamber controller via the Front Panel, built in RS232, RS422 or GPIB busses. The controller then controls the matrix system via its USER bus. These commands are supported in firmware versions 2.2 and higher.

For 4 wire Kelvin measurements; {2 lead axial or radial components}

Select 1 of 160 devices;
OUT4:n,m where: n=device number (1 to 32)
 m=component board number (1 to 5)

For 6 or 8 wire Kelvin measurements; {3 or 4 lead components}

Select 1 of 80 devices;
OUT5:n,m where: n=device number (1 to 16)
 m=component board number (1 to 5)

For example, to measure a 2 leaded part in socket number 17 on component board number 3, issue OUT4:17,3 command then issue ? command. Read on display a response of "OK" if command was accepted, then perform your measurement on the part.

The following is an example of a local program that can be used to step through each 2 leaded part. Issue the following commands from the front panel.

I0=1
I1=1
DELP 0 To delete program 0 if one exists
EDIT 0 Begin editing program 0
FOR I1=1,6 Loop 5 boards
FOR I0=1,33 Loop 32 components per board
OUT4 :I0,I1
BKPNT I0 Display number and wait for ENTER key
NEXT I0
NEXT I1
END End program edit
RUN 0 To run the local program 0

The program will sequentially step through each component one at a time. The program will display the component number, beep, and wait for you to press the ENTER key after selecting each component.
OUT Cont.

Example for Analog I/O:

OUT<device number>:<address>, <data>
where device number of ANALOG PORT is 3.
where address of ANALOG PORT is a channel # 0 to 3
where data of ANALOG PORT is a base ten number, from 0 to 255.
The A/D to D/A data is 0 at low level and 255 at high level.

OUT3:c,x
where c is channel 0,1,2 or 3
where x is base ten number from 0 to 255.
The A/D to D/A is 0 at low level and 255 at high level.

when x=0 represents 0v for 0v to 5v output range
low level represents -5v for -5v to +5v output range
represents 0mA for 0mA to 20mA output range

when x=255 represents 5v for 0v to 5v output range
high level represents +5v for -5v to +5v output range
represents 20mA for 0mA to 20mA output range

Note: The unit will accept a data value larger than 255 (ie. 0 = low value, 255 = high value,
256 = low value, 511 = high value, 512 = low value etc...)

In order for the OUT3 command to work properly in a local program, you must use an integer value from 0 - 255. Assuming a 0 - 5V analog output range, to obtain the integer value you need to produce the correct voltage, you must divide the desired voltage by 5V and multiply this result by 255. (Vint = Vx/5 *255). To obtain 1V, (1/5*255=51) you would issue the command: OUT3:2,51 and to produce 5V you would issue the command OUT3:2,255 (5/5*255=255).

Formulas to determine decimal numbers from 0 - 255 to provide desired voltage:

For 0 - 5V Range:
i.e. V = 0V, x = 0
V = 5V, x = 255
x = (V_{desired}/5) * 255

For 0 - 20mA Range:
i.e. I = 0mA, x = 0
I = 20mA, x = 255
x = (I_{desired}/20) * 255

For -5V - +5V Range:
i.e. V = -5V, x = 0
V = +5V, x = 255
x = (V_{desired}/10) * 255
PIDA

Function: Set or examine PID settings for advanced chamber control.

Syntax:

```
PIDA?
PIDA=n[,mmm.m]
```

Description:

This command solves the problem of controlling your device under test (DUT) temperature at the set point rather than just controlling the chamber air temperature. In the standard chamber control mode the chamber probe provides feedback to the PID control loop thereby controlling the air temperature of the chamber. This command allows the user to control the temperature to the average of chamber and user probe temperature or bring the user probe temperature to the set value. PIDA command can be accessed from the front panel by selecting either PIDH or PIDC, backspacing over the last letter and replacing it with the letter “A”.

Restrictions: None

Example:

```
PIDA?
```

To determine current setting

```
PIDA=n[,mmm.m]
```

where n=0, 1, 2, 3, or 4

- 0 = Normal PID mode (Default controls to chamber probe)
- 1 = Control to the average of chamber and user probe temp
- 2 = Slowly force user probe temp. to the set value
- 3 = Use user probe for control
- 4 = Control to average then move user to set

When n is 2 or 4 a damping coefficient may be entered to control loop speed. Damping coefficient range = 0 to 1000, default=400.

```
mmm.m = Damping coefficient
```

When mode 2 or 4 is selected a damping coefficient may be set. If you don't specify a damping the default value of 400 is used. The larger the damping the slower the controller will move the chamber to the user reading. For more information see the PIDA application note.

Example:

```
PIDA=4,500
```

Set mode 4 with a damping coefficient of 500.
PIDC

Function: Set or examine PID coefficients for cool control

Syntax:
- `PIDC=nnn.n,nnn.n,nnn.n` Set cool PID coefficients
- `PIDC?` Examine cool PID coefficients

Description:
The PIDC command permits modification and examination of the proportional, integral and derivative (PID) coefficients used in the algorithm which controls the chamber cooling process. PID coefficients may be changed to accommodate varying changes in mass or radiant power in the test chamber area. The PID Application Note contains a procedure for tuning PID coefficients to a particular application. PID coefficients are stored in battery backed memory.

Restrictions: None

See Also: PIDH, PWMP

Example:
- `PIDC=.15,1e-3,.10«` Set PID coefficients
- `PIDC?«` Examine PID coefficients
- `PIDC=0.15` Controller response, P
- `PIDC=0.001` Controller response, I
- `PIDC=0.10` Controller response, D

PIDH

Function: Set or examine PID coefficients for heat control

Syntax:
- `PIDH=nnn.n,nnn.n,nnn.n` Set heat PID coefficients
- `PIDH?«` Examine heat PID coefficients

Description:
The PIDH command permits modification and examination of the proportional, integral and derivative (PID) coefficients used in the algorithm which controls the chamber heating process. PID coefficients may be changed to accommodate varying changes in mass or radiant power in the test chamber area. The PID Application Note contains a procedure for tuning PID coefficients to a particular application. PID coefficients are stored in battery backed memory.

Restrictions: None

See Also: PIDC, PWMP

Example:
- `PIDH= .15, 1e-3, .10«` Set PID coefficients
- `PIDH?«` Examine PID coefficients
- `PIDH=0.15` Controller response, P
- `PIDH=0.001` Controller response, I
- `PIDH=0.10` Controller response, D
PWMP

Function: Set or examine the pulse width modulator period

Syntax:
- `PWMP=nnn.n` Set PWM period
- `PWMP?` Examine PWM period

Description:
The PWMP command permits modification of the period allocated to the pulse width modulation algorithm. In the control of the chamber, the controller uses a constant period of time of which the controller calculates the portion of time for which heat or cool should be turned on. This is based on the feedback from the chamber probe and the PID coefficients. Shorter periods of time for pulse width modulation translates into faster tracking of changes in the test chamber. When changes in the test chamber are expected not to change for an extended time, during long soak periods for example, it is more economical not to adjust quite so frequently. In this case, increasing the PWM period, reducing the modulation rate, conserves power and coolant and reduces wear on coolant supply valves. However, increasing the PWMP above its default value of 2 may cause control loop instability.

Restrictions: Period range from 2 seconds to 30 seconds

See Also: PIDH, PIDC

Example:
- `PWMP=2«` Set PWM period to 2 seconds
- `TEMP?«` Examine current temperature
- `25.0` Controller response
- `RATE=10«` Define new temperature segment
- `WAIT=5«` Set wait for 5 min., stabilize mass
- `SET=35.0«` Set new temp to 35.0

After 1 min for ramp and after 5 min for wait timeout:
- `PWMP=15«` Set PWM period for 15 sec.
- `WAIT=10:00:00«` Set long wait period, 10 hrs.
- `SET=35.0«` Again, set temperature
RATE

Function: Set the current rate of change for ramping

Syntax:

- RATE=nnn.n[u] Set the current ramping rate
- RATE? Examine the current ramping rate

Description:

The RATE command allows for setting or examining the rate at which the controller will control the change from one set point to another set point within the chamber. Rate is based on the chamber probe and on the units of SCALE set up for the chamber probe in the CAL menu or optional u units. When setting or examining the rate, nnn.n represents units per minute.

Restrictions: Chamber dynamics limit the maximum ramping rate.

See Also: SET, WAIT

Example: If SCALE for the chamber probe is in °C

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE=10.0«</td>
<td>Set ramping rate for 10.0°C/minute</td>
</tr>
<tr>
<td>RATE?«</td>
<td>Examine present ramping rate</td>
</tr>
<tr>
<td>10.0</td>
<td>Controller response, 10.0°C/min.</td>
</tr>
<tr>
<td>TEMP?«</td>
<td>Read present chamber temperature</td>
</tr>
<tr>
<td>25.0</td>
<td>Controller response, for example 25.0°C</td>
</tr>
<tr>
<td>SET=35.0«</td>
<td>Set new set point, for example 35°C</td>
</tr>
<tr>
<td>After waiting 30 seconds</td>
<td></td>
</tr>
<tr>
<td>TEMP?«</td>
<td>Read present chamber temperature</td>
</tr>
<tr>
<td>30.0</td>
<td>Controller response, up 5°C in one half min.</td>
</tr>
</tbody>
</table>

RTL

Function: RS-232/422 Command to unlock local keyboard

Syntax:

- RTL

Description:

The Return to Local (RTL) command may be issued from a host processor to unlock the local keyboard. The RTL command only applies to host computers communicating over the RS-232 or RS-422 serial interfaces. Local keyboard function may be locked thru the use of the LLO command. Local keyboard unlock operation for host processors communicating over the IEEE-488 interface varies according to the particular host computer syntax requirements.

Restrictions: RS-232/422 remote interface command only. GPIB interface host computers have unique methods for returning to local operation.

See Also: LLO

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLO«</td>
<td>Lockout local keyboard</td>
</tr>
<tr>
<td>Run sensitive testing</td>
<td></td>
</tr>
<tr>
<td>RTL«</td>
<td>Unlock local keyboard</td>
</tr>
</tbody>
</table>
RUN

Function: Starts the execution of a local program

Syntax: RUNm or RUN#m

Description: The RUN command initiates the execution of local program defined by m, where m selects a
local program in the range of 0 to 9. Local programs are entered into the controller using the EDIT
command from the local keyboard or downloaded from a remote host computer using the STORE
command. Local program execution may be prematurely terminated by issuing a STOP command.

Restrictions: None

See Also: RUN-TIME, EDIT, STOP, STORE, END

Example: This example downloads a simple program from remote processor and then executes
the program. Scale in °C.

DELP#0« Delete current program 0
STORE#0« Prepare controller for entering local prog
FOR I2=0,10« Set FOR loop for 10 loops
RATE=10« Define temp. segment 1, RATE=10°C/m
WAIT=15« Wait = 15 minutes
SET=-55.0« Set final temp to -55.0°C
RATE=10« Define temp. segment 2, RATE=10°C/m
WAIT=15« Wait = 15 minutes
SET=125.0« Set final temp = +125.0°C
NEXT I2« Mark end of FOR loop, I2
END« Mark end of local prog. and end of STORE
RUN#0« Run local prog. 0
RUN-TIME

Function: Starts the execution of a local program at a specific time of day.

Syntax: RUNmTIME=hh:mm:ss or RUN#mTIME=hh:mm:ss

Description: The RUN-TIME command initiates the execution of local program defined by m, where m selects a local program in the range of 0 to 9, at a specific time of day. Local programs are entered into the controller using the EDIT command from the local keyboard or downloaded from a remote host computer using the STORE command. Local program execution may be prematurely terminated by issuing a STOP command.

Restrictions: None

See Also: RUN, EDIT, STOP, STORE, LIST, END

Example: This program lists the current program in local program 0 from a remote interface and then prepares for executing the program at 5:00 PM.

```
LIST#0« List local program 0
Controller response:
FOR I2=0,10 Set FOR loop for 10 loops
RATE=10 Define temp. segment 1, RATE=10°C/m
WAIT=15 Wait = 15 minutes
SET=-55.0 Set temp to -55.0°C
RATE=10 Define temp. segment 2, RATE=10°C/m
WAIT=15 Wait = 15 minutes
SET=125.0 Set temp = +125.0°C
NEXT I2 Mark end of FOR loop, I2
END Mark end of local prog. and end of STORE
RUN#0TIME=17:00:00« Run local prog. 0 at 5:00 PM
```
Function: Transmit and receive ASCII data from the RS-232/422 to the GPIB Interface.

Syntax:
- `!sss...sss` Transmit string `sss...sss` to the serial interface
- `S` Receive string from serial interface.

Description:
The `/!` command is a TC01 compatible command which allows the GPIB interface to transmit ASCII data to the RS-232/422 serial interface or receive data from the serial interface. Care should be taken that a serial device does not transmit data to the controller until an `S` command has been issued, since, data received from a serial device without an `S` command pending will be interpreted as command data for the chamber controller. An `S` command is required for each string of characters, terminated with a carriage return and/or line feed, to be transferred to the GPIB interface. GPIB lock-up time is inhibited for the `S` command to allow time for a serial device to respond to a prompt message.

Restrictions: GPIB remote interface command only.

Example: these commands must originate from the GPIB interface

- `S«` GPIB interface sends request for reply prior to sending a prompt message to insure that the reply message is sent to the GPIB interface by the controller.
- `!send status«` The string “send status” is sent from the controller’s serial interface to prompt serial interface device.
- `I’m OK` Controller response, transfers message received from serial interface to the GPIB interface.
SCALE

Function: Examine present scale for the chamber or user probes

Syntax:
- SCALE#1? Examine chamber probe scale
- SCALE#2? Examine USER probe scale

Description:
The SCALE command allows a remote interface to examine the present scale of units for the chamber or USER probe. The scale of units for the two probes is set in the CAL menu. SET, RATE, and limit commands that do not specify a scale of units are assumed to be in the scale of the chamber probe.

Restrictions: Remote interface command only

See Also: CAL Menu

Example:
- SCALE#1?« Examine chamber probe scale
- DEG C Controller response, degrees Centigrade
- SCALE#2?« Examine USER probe scale
- DEG F Controller response, degrees F
SDEF

Function: Set or examine the set default menu (SDEF) parameters

Syntax: SDEF=xxxxxxxn
Sets SDEF parameters
where x is Y or N character
where n is a digit from 0 to 3

SDEF?
Examines the SDEF parameters by returning an 8 character string

where position
1: Y = RS echo is on
2: Y = chart chamber temp on D/A A
3: Y = chart user temp on D/A B
4: Y = optional printer enabled (Ver. ≤ 5.xx)
5: Y = auto cool off enabled
6: Y = auto 3 tank LCO₂ switching enabled
7: Y = LN₂ auto purge enabled
8: 0 to 3 for buzzer volume 0 = off

Description:
The SDEF command allows for setting or examining the set default parameters over the GPIB, RS232 or RS422.

Restrictions: Remote command only

See Also: See Set Default Menu in Section 3 of this manual

Example: SDEF=YNNYNYN2
where position
1: Y = RS echo is on
2: N = do not chart chamber temp on D/A A
3: N = do not chart user temp on D/A B
4: Y = optional printer enabled (Ver. ≤ 5.xx)
5: N = auto cool off disable
6: Y = auto 3 tank LCO₂ switching enabled
7: N = LN₂ auto purge disabled
8: 2 = medium buzzer volume
SET

Function: Set or examine temperature segment final temperature

Syntax:
- SET=[-]nnn.n[u] Set segment final temperature
- SET? Examine segment final temperature

Description:
The SET command allows for setting or examining the final temperature within a temperature segment. The temperature segment consists of the change of temperature, defined by the RATE command, from the chamber present temperature to the temperature defined by the SET command, plus the time specified by the WAIT command to soak at the temperature defined by the SET command. The units accepted by the SET command are those chosen in the probe CAL menu for the chamber probe if not specified by optional u. For best results a temperature segment should be entered as RATE, WAIT then SET.

Restrictions: The value set by the SET command must range between the values set for the LTL and UTL commands.

See Also: RATE, WAIT, LTL, UTL

Example: If SCALE for the chamber probe is in °C
- RATE=10.0« Set ramping rate for 10.0°C/minute
- WAIT=5« Set wait = 5 minutes
- TEMP?« Read present chamber temperature
 25.0 Controller response, for example 25.0°C
 SET=95.0 F « Set new set point, for example 95º F = 35°C
 SET? Examine present set temp.
 35.0 Controller response

 After waiting 30 seconds:
 TEMP? « Read present chamber temperature
 30.0 Controller response, up 5°C in one half minute.
SINT

Function: Set or examine the set interrupt parameters

Syntax:
SINT=xxxxxxxxxn

Sets SINT parameters

where x is Y or N character

where n is a digit from 0 to 8

SINT?

Examines the SINT parameters by returning an 11 character string

where position

1: Y=all remote serial RS port interrupts off
2: Y=single timeout interrupt enabled
3: Y=deviation interrupt enabled
4: Y=Local Program (LP) timeout interrupt enabled
5: Y=Local Program (LP) done interrupt enabled
6: N=buzz single timeout
7: N=buzz Local Program (LP) done
8: N=buzz Local Program (LP) timeout
9: Y=command error interrupt enabled
10: Y=BKPNT interrupt enabled
11: 0= no parallel poll or bit 1 to 8

Note: When entering from the front panel a 1 may be used for Y and 0 for N.

Description:
The SINT command allows for setting or examining the set interrupt parameters over the GPIB, RS232 or RS422.

Restrictions: Remote command only

See Also: See Set Interrupt Menu, in Section 3 of this manual

Example:
SINT=NYYYYNNNY0

where position

1: N = all remote interrupts ARE NOT off
2: Y = single timeout interrupt enabled
3: Y = deviation interrupt enabled
4: Y = Local Program (LP) timeout interrupt enabled
5: Y = Local Program (LP) done interrupt enabled
6: N = buzz single timeout disabled
7: N = buzz Local Program (LP) done disabled
8: N = buzz Local Program (LP) timeout disabled
9: Y = command error interrupt enabled
10: Y = BKPNT interrupt enabled
11: 0 = no parallel poll

1 to 8 to define parallel poll bit
STATUS?

Function: Allows polling in lieu of interrupts for remote operation

Syntax: STATUS?

Description:
This command will allow polling to take place instead of interrupts when controlling the chamber via one of the remote busses.

Restrictions: Remote command only

Example: STATUS? Returns with 19 character response where char position:
1: Y = power is on
2: Y = command error last command
3: Y = time out LED is on
4: Y = waiting for timeout
5: Y = heat output is enabled
6: Y = cool output is enabled
7: Y = valid set temperature
8: Y = deviation limit exceeded
9: Y = currently ramping
10: Y = chamber temp < lower limit
11: Y = chamber temp > upper limit
12: Y = waiting at a BKPNT
13: Y = in LP run mode
14: Y = in LP remote store mode
15: Y = in local edit LP mode
16: Y = waiting to run LP at TOD
17: Y = GPIB bus timeout
18: Y = in local keyboard lockout mode
19: 0 = system Self Test was OK
 1 = Battery RAM error found (check default settings)
 2 = EE RAM error found (check probe calibration)
 3 = ROM error found (call factory)
STOP

Function: Terminate local program execution and single temperature segment execution.

Syntax: STOP

Description: If in Local Program operation, the STOP command terminates local program execution by the controller. If running in single temperature mode, then entering the STOP command terminates the temperature segment and sets SET=NONE and WAIT=FOREVER and also will cancel a pending run at time of day.

Restrictions: None

See Also: RUN

Example:
DELP#0« Clear LP area #0
STORE#0« Ready controller for accepting LP commands
*** Send LP commands
END« Terminate store operation
LIST#0« Display local program
*** Controller displays local program
RUN#0« Execute local program

STOP«Terminates LP

STOPE9

Function: Restores SDEF and SINT variables to factory default settings and clears all local program data.

Syntax: STOPE9

Description: The STOPE9 command resets the settings in the SDEF and SINT MENU, deletes all local programs and all limits. You may wish to write down settings that will be needed during your setup. Calibration information is not affected by this command. This is a controller software reboot command.

Restrictions: None

See Also: Set Default Menu and Set Interrupt Menu in Section 3.

Example: STOPE9 Depress the STOP key then the green Shift, E, 9 then ENTER. The EC1x chamber will reset defaults, do a soft reboot and go to power off mode. Turn on chamber.

Chamber will display: SELF TEST ERROR! Push ENTER key
RAM LOST DATA! Push ENTER key
CHECK DEFAULTS Push ENTER key
STORE

Function: Stores a downloaded local program from a remote interface

Syntax:
STOREm or STORE#m

Description:

The STORE command allows a remote interface to download a local program to the controller's local memory, where “m” identifies one of ten possible local program areas, 0 through 9. Once downloaded, local programs may be executed by issuing a RUN command. Prior to downloading a program to the controller, the local program must be cleared by using the DELP command. Local programs can be displayed or uploaded by using the LIST command. The response to the STORE command is the number of free bytes in controller RAM.

Restrictions: Remote interface command only.

See Also: LIST, RUN, DELP, STOP

Example:
DELP#0« Clear LP area #0
STORE#0« Ready controller for accepting LP commands
nnn Controller response, # free bytes
*** Send LP commands, OK response to each command
END« Terminate store operation
LIST#0« Display local program
*** Controller displays local program
RUN#0« Execute local program

T

Function: Examine current chamber temperature in °C

Syntax: T

Description:

The T command is a TC01 controller compatible command which examines the present temperature associated with the chamber probe. The response is always in degrees centigrade. Use the more general temperature command if possible.

Restrictions: Remote interface command only.

See Also: TEMP?, UCHAN?

Example:
SET=25.0« Set current set temperature to 25°C

After ramp period ended:

T« Examine current chamber temperature
25.1 Actual chamber temperature returned
TEMP?« Examine current chamber temperature
25.1 Actual chamber temperature returned
TANK

Function: Set or Examine status of LCO₂ or LN₂ Tank

Syntax:
- Tank=F: Reset tank status to full
- Tank?: Examine status of tank

Description:
These commands only apply if the LCO₂ or LN₂, 2 or 3 tank auto switch option is installed on your EC1x and the Auto-Switch LCO₂ or LN₂ must be enabled in the SDEF menu. The TANK=F command is used to reset the tank status to full for all tanks. This would be done after replacing the empty tanks. The TANK? command is used to determine the full or empty status of each tank.

Restrictions: Only applicable to the 3 tank LCO₂ or 2 tank LN₂ auto switch manifold. Auto-Switch LCO₂ or LN₂ must be enabled in the set default menu.

Example:
- TANK=F: where TANK is red shifted IN key on the front panel
 Resets all tanks to full
- TANK?: where TANK is the red shifted IN key from the front panel
 1=E, 2=F, 3=F (1) The response is tank1 empty, tank2 full, tank3 full. The number (1) indicates that tank 1 is currently being used for cooling. This could also read (2) or (3) for tanks 2 or 3. The switching time between tanks is approx. 30 seconds.

TEMP

Function: Examine current chamber temperature

Syntax: TEMP?

Description:
The TEMP command provides the means for a remote interface to read the present value of the chamber probe. This value is normally displayed on the first line of the front panel LCD display. The units for the chamber probe are set in the CAL menu for °F, °C, or °K.

Restrictions: Remote Interface command only.

See Also: T, UCHAN, CHAM?

Example:
- TEMP?: Read chamber probe
 25.0 Controller response, 25.0 units
TIME

Function: Set or examine time of day

Syntax:
- `TIME=hh:mm:ss`
 Set time of day
- `TIME?`
 Examine present time of day

Description:
The TIME command is useful for documenting report outputs and for starting local programs at a specific time of day. Time is entered and displayed in a 24 hour format, i.e., hours (hh) range from 00 to 23; minutes (mm) range from 00 to 59 and; seconds (ss) range from 00 to 59.

Restrictions: None

See Also: `RUN#mTIME=hh:mm:ss`

Example:
```
TIME=13:30:00 « Set time to 1:30 PM
TIME? « Examine time of day
13:30:00 « Controller response
```

TIMEE?

Function: Reads the accumulated elapsed time in hours that the chamber has been running

Syntax: `TIMEE?`
Examine accumulated elapsed hours

Description:
The TIMEE? command keeps track of the amount of time (in hours) that the chamber has been running. The elapsed time is saved in EEROM to protect against RAM memory loss. The time is updated whenever the unit is turned off or when a TIMEE? command is received and at least one hour has elapsed since the last update.

Restrictions: None

Example:
```
TIMEE? « Examine elapsed hours of
+32.37 « Controller response is 32.37 Hours
```
UCHAN

Function: Examine the USER channel probe value.

Syntax: UCHAN?

Description: The UCHAN command permits a remote interface to examine the value of the USER probe. The units of measure for the USER probe are set in °F, °C, or °K. The USER probe value is normally displayed on the second line of the front panel LCD display.

Restrictions: Remote interface command only.

See Also: TEMP, T, SCALE

Example: UCHAN? « Examine USER channel probe value
25.0 Controller response, 25.0 units

USER?

Function: Examine the USER channel probe value.

Syntax: USER?

Description: The USER command permits a remote interface to examine the value of the USER probe. The units of measure for the USER probe are set in °F, °C, or °K. The USER probe value is normally displayed on the second line of the front panel LCD display.

Restrictions: Remote interface command only.

See Also: TEMP, T, SCALE, UCHAN, CHAM?

Example: USER? « Examine USER channel probe value
25.0 Controller response, 25.0 units
UTL

Function: Set or examine the upper temperature limit

Syntax:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]nnn.nUTL</td>
<td>TC01 compatible set UTL in °C</td>
</tr>
<tr>
<td>UTL</td>
<td>TC01 compatible examine UTL in °C</td>
</tr>
<tr>
<td>UTL=nnn.n[u]</td>
<td>Set UTL, variable units</td>
</tr>
<tr>
<td>UTL?</td>
<td>Examine UTL, variable units</td>
</tr>
</tbody>
</table>

Description:
The TC01 compatible commands provide for setting and examining the UTL in degrees centigrade only. If temperature units are desired to be the same as that set in the CAL menu for the SCALE variable, then the UTL=nnn.n and UTL? command formats should be used. If the chamber temperature exceeds the UTL setting, then an over temperature interrupt will be generated to the active remote interface and the heat output will be disabled.

Restrictions: TC01 compatible commands operate from the remote interface only.

See Also: LTL

Example:

If scale is set to °F

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.0UTL«</td>
<td>Set UTL to 150°C</td>
</tr>
<tr>
<td>UTL«</td>
<td>Examine UTL in °C</td>
</tr>
<tr>
<td>150.0</td>
<td>Controller response, 150.0°C</td>
</tr>
<tr>
<td>UTL?«</td>
<td>Examine UTL in units of SCALE, °F</td>
</tr>
<tr>
<td>302.0</td>
<td>Controller response, 302°F</td>
</tr>
</tbody>
</table>

VER?

Function: Examine the version number of the software in the controller

Syntax: VER?

Description:
The VER? command allows the user to check the version of software that the EC1x chamber is running. Version 2.20 and up will also display on the front panel when the unit is turned on.

Restrictions: RS232/422 remote interface command only.

See Also: Version number will also appear at the back of the first page of your EC1x user manual.

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER?</td>
<td></td>
</tr>
<tr>
<td>SUN EC1X V_11.xx</td>
<td>Displayed on REV G2 chambers</td>
</tr>
<tr>
<td>SUN EC1X V_10.xx</td>
<td>Displayed on REV G or G2 chambers</td>
</tr>
<tr>
<td>SUN EC1X Ver5.xx</td>
<td>Displayed on REV E chambers</td>
</tr>
<tr>
<td>SUN EC1X Ver4.xx</td>
<td>Displayed on REV D chambers</td>
</tr>
<tr>
<td>SUN EC1X Ver3.xx</td>
<td>Displayed on REV C chambers</td>
</tr>
<tr>
<td>SUN EC1X Ver2.xx</td>
<td>Displayed on REV B chambers</td>
</tr>
<tr>
<td>SUN EC1X Ver1.xx</td>
<td>Displayed on REV A chambers</td>
</tr>
</tbody>
</table>

Note: REV is on Serial Tag on back of chamber.
WAIT

Function: Set or examine the temperature segment wait period

Syntax:
- `WAIT=hh:mm:ss` Set wait in hours:minutes:seconds
- `WAIT=mm` Set wait in minutes only (mm=00 to 59)
- `WAIT=F[OREVER]` Set WAIT to forever
- `WAIT?` Examine current wait setting

Description:
The WAIT command provides timing for the length of time the controller has maintained the set temperature. The “+/− AT SET TRIGGER” variable in the SDEF menu determines when timing is started. Once the wait period begins, the wait time continues regardless of changes in chamber temperature. When running a local program, the next command in the program is executed after the wait period has timed out. In single temperature mode, the controller continues to maintain the set temperature after the wait period time-out. During the wait period, examination of WAIT returns the time remaining in the wait period. After the end of a wait time-out, the WAIT is reset to forever. For best operation the temperature segment should be entered RATE, WAIT then SET.

Restrictions: Range from 99:59:59 to 00:00:01

See Also: SET, RATE, M

Example:
- `RATE=10` Define temperature segment, Rate=10°C/min
- `WAIT=00:10:30` Wait=10 min, 30 sec
- `TEMP?` Examine current chamber temperature
- 25.0 Controller response, 25.0°C
- `SET=35.0` Set new temperature, 35°C

After 1 minute, set temperature is reached and wait period begins.

After 1 more minute:
- `WAIT?` Examine wait setting
- 00:09:30 Controller response, 9 min, 30 sec remaining
SECTION 6. EC1X OPTIONS

POWER OPTIONS

The EC1x is intended to operate from a variety of power sources. Options allow for line voltages to meet domestic and foreign requirements. The EC1x chambers are configured by the manufacturer and may not be reconfigured.

Table 1.3-1 AC. Power Connectors

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Model#</th>
<th>Plug Hubbel#</th>
<th>Receptacle Hubbel#</th>
<th>European Receptacles</th>
<th>*Fuse#</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 - 125 Vac 3 Wire 50/60 Hz Single Phase</td>
<td>EC1A</td>
<td>5266-C</td>
<td>5261</td>
<td>3 pin, IEC309, 16amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC10</td>
<td>5266-C</td>
<td>5261</td>
<td>3 pin, IEC309, 16amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC12</td>
<td>5366-C</td>
<td>5361</td>
<td>3 pin, IEC309, 16amp, 100-250Vac</td>
<td>650012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 - 240 Vac 3 Wire 50/60 Hz Single Phase</td>
<td>EC1A</td>
<td>5666-C</td>
<td>5661</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC10</td>
<td>5666-C</td>
<td>5661</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC11A</td>
<td>2321</td>
<td>2320</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650013</td>
</tr>
<tr>
<td></td>
<td>EC11</td>
<td>2321</td>
<td>2320</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650013</td>
</tr>
<tr>
<td></td>
<td>EC12</td>
<td>5666-C</td>
<td>5661</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC13</td>
<td>5666-C</td>
<td>5661</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC13HA</td>
<td>2621</td>
<td>2620A</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC1.3W</td>
<td>5666-C</td>
<td>5661</td>
<td></td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC15HA</td>
<td>2621</td>
<td>2620A</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC16</td>
<td>2621</td>
<td>2620A</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC16HA</td>
<td>2621</td>
<td>2620A</td>
<td>3 pin, IEC309, 32 amp, 100-250Vac</td>
<td>650009</td>
</tr>
<tr>
<td>200 - 240 Vac 50/60 Hz 4 Wire Single Phase</td>
<td>EC1A</td>
<td>2411</td>
<td>2410</td>
<td>Not offered to European market</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC10</td>
<td>2411</td>
<td>2410</td>
<td>Not offered to European market</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC11</td>
<td>2411</td>
<td>2410</td>
<td>Not offered to European market</td>
<td>650013</td>
</tr>
<tr>
<td></td>
<td>EC12</td>
<td>2411</td>
<td>2410</td>
<td>Not offered to European market</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC13</td>
<td>2411</td>
<td>2410</td>
<td>Not offered to European market</td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC13HA</td>
<td>2711</td>
<td>2710A</td>
<td>Not offered to European market</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC1.3W</td>
<td>2411</td>
<td>2410</td>
<td></td>
<td>650011</td>
</tr>
<tr>
<td></td>
<td>EC15HA</td>
<td>2711</td>
<td>2710A</td>
<td>Not offered to European market</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC16</td>
<td>2711</td>
<td>2710A</td>
<td>Not offered to European market</td>
<td>650009</td>
</tr>
<tr>
<td></td>
<td>EC16HA</td>
<td>2711</td>
<td>2710A</td>
<td>Not offered to European market</td>
<td>650009</td>
</tr>
</tbody>
</table>

* FUSE #

<table>
<thead>
<tr>
<th>Fuse#</th>
<th>Fuse Type & Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>650009</td>
<td>30 Amp, 250v, fast acting, BLN30 or BAN30</td>
</tr>
<tr>
<td>650011</td>
<td>15 Amp, 250v, fast acting, BLN15 or BAN15</td>
</tr>
<tr>
<td>650012</td>
<td>20 Amp, 250v, fast acting, BLN20r BAN20</td>
</tr>
<tr>
<td>650013</td>
<td>25 Amp, 250v, fast acting, BLN25 or BAN25</td>
</tr>
</tbody>
</table>
COOLING OPTIONS

The standard EC1x is intended to operate directly from liquid carbon dioxide. The carbon dioxide is to be provided from an industry standard 50 pound siphon type K cylinder. The draw pressure from the cylinder is approximately 850 PSI at room temperature. A hose and fitting necessary to interface between the EC1x and LCO₂ cylinder is provided. No other valves or regulators are necessary. The lower temperature limit of LCO₂ is -73°C.

Option OCLDCWLNV provides the capability for the delivery of low pressure LCO₂ from a 300 PSI Dewar vessel or bulk delivery system. Extra insulation is provided and a special nozzle assembly is used. A hose and fitting necessary to interface between the EC1x and LCO₂ Dewar is provided.

Option OLNDCxT provides for the extended operating range of liquid nitrogen. Chambers configured with the Liquid Nitrogen option as the cooling expectorant are able to operate as low as -184°C in temperature. Liquid nitrogen (LN₂) is commonly supplied in either a vessel (also called a Dewar) or a bulk delivery system. Delivery pressure for these systems vary. A bulk delivery system normally runs low pressure (this pressure should not be below 25 psi). Delivery from a vessel is available in low or high pressure. Low pressure is 25psi to 50psi. High pressure is approximately 100psi. Other pressure set ups are available, please contact factory. The pressure specified for the chamber at time of order is recorded on page 2 of this manual and on the I.D. Tag found on the back of the chamber.

PORT AND WINDOW OPTIONS

Several options provide standard port and window options for convenience when working with the EC1x. Standard options include 1", 2", 3" or 4" ports in the door and/or sides of the chamber. A window may also be installed in the door. Please call with your special requirements.
SECTION 7. SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model #</th>
<th>EC1A</th>
<th>EC11A</th>
<th>EC10</th>
<th>EC11</th>
<th>EC1.3W</th>
<th>EC12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Volume</td>
<td>0.37 ft³</td>
<td>0.37 ft³</td>
<td>0.7 ft³</td>
<td>0.7 ft³</td>
<td>1.37 ft³</td>
<td>2.2 ft³</td>
</tr>
<tr>
<td>Internal Dim.</td>
<td>10.0"W</td>
<td>10.0"W</td>
<td>12.0"W</td>
<td>12.0"W</td>
<td>14.0"W</td>
<td>20.0"W</td>
</tr>
<tr>
<td></td>
<td>8.0"H</td>
<td>8.0"H</td>
<td>9.75"H</td>
<td>9.75"H</td>
<td>13.0"H</td>
<td>12"H</td>
</tr>
<tr>
<td></td>
<td>8.0"D</td>
<td>8.0"D</td>
<td>10.25"D</td>
<td>10.25"D</td>
<td>13.0"D</td>
<td>16.0"D</td>
</tr>
<tr>
<td>External Dim.</td>
<td>17.5"W</td>
<td>17.5"W</td>
<td>21.0"W</td>
<td>21.0"W</td>
<td>26.5"W</td>
<td>30.0"W</td>
</tr>
<tr>
<td></td>
<td>13.25"H</td>
<td>13.25"H</td>
<td>16.0"H</td>
<td>16.0"H</td>
<td>21.0"H</td>
<td>19.5"H</td>
</tr>
<tr>
<td></td>
<td>20.0"D</td>
<td>20.0"D</td>
<td>24.0"D</td>
<td>24.0"D</td>
<td>31.0"D</td>
<td>30.0"D</td>
</tr>
<tr>
<td>Temp. Resolution</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
</tr>
<tr>
<td>User Probe</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery Backup</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IEEE-488</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RS232</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RS422</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max. Rate of Change</td>
<td>.5ºC/sec</td>
<td>1.0ºC/sec</td>
<td>.5ºC/sec</td>
<td>.8ºC/sec</td>
<td>.33ºC/sec</td>
<td>.25ºC/sec</td>
</tr>
<tr>
<td>CFM Vertical</td>
<td>60 ft³/min</td>
<td>120 ft³/min</td>
<td>60 ft³/min</td>
<td>120 ft³/min</td>
<td>250 ft³/min</td>
<td>150 ft³/min</td>
</tr>
<tr>
<td>110/115 V, 50/60 Hz Single Phase</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/230 V, 50/60 Hz Single Phase, 3/4 Wire</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Power Req.</td>
<td>1600 Watts</td>
<td>4200 Watts</td>
<td>1800 Watts</td>
<td>4200 Watts</td>
<td>3000 Watts</td>
<td>2200 Watts</td>
</tr>
<tr>
<td>Net/Shipping Weight</td>
<td>38/55lbs</td>
<td>38/55lbs</td>
<td>49/68lbs</td>
<td>49/68lbs</td>
<td>77/94 lbs</td>
<td>80/100lbs</td>
</tr>
<tr>
<td>Environment, Operating</td>
<td>Temperature:</td>
<td>-94 to 608 F (-70 to 320 C) using Carbon Dioxide</td>
<td>-299 to 608 F (-184 to 320 C) using Liquid Nitrogen</td>
<td>Barometric Pressure:</td>
<td>Ambient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humidity:</td>
<td>20 - 95% non-condensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment, Shipping & Storage</td>
<td>Temperature:</td>
<td>0 to 110 F (-18 to 43 C)</td>
<td>Barometric Pressure:</td>
<td>5.54 to 30 in. Hg (0.184 to 1.003 atm)</td>
<td>Vibration and Shock: As encountered in normal shipping and handling with no degradation</td>
<td></td>
</tr>
<tr>
<td>Temperature Range (ºC)</td>
<td>LCO₂ cooling: -73 to 315º C for all of the above models, Except for EC1.3W -73 to +400ºC</td>
<td>LN: cooling: -184 to 315º C for all of the above models, Except for EC1.3W -184 to +400ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFETY:</td>
<td>Probe Malfunction Controller Malfunction Temperature Limits</td>
<td>Open / Short Probe Detection</td>
<td>Hardware Watch Dog Timer</td>
<td>Upper and Lower software limits and Bi-Metal Adjustable Thermostat or Limit Module with Adjustable Upper and Lower limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model #</td>
<td>EC13</td>
<td>EC13HA</td>
<td>EC15HA</td>
<td>EC16</td>
<td>EC16HA</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Chamber Volume</td>
<td>3.0 ft³</td>
<td>3.0 ft³</td>
<td>5.0 ft³</td>
<td>6.16 ft³</td>
<td>6.16 ft³</td>
<td></td>
</tr>
<tr>
<td>Internal Dim.</td>
<td>20"W</td>
<td>20"W</td>
<td>20"W</td>
<td>22"W</td>
<td>22"W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12"H</td>
<td>12"H</td>
<td>12"H</td>
<td>22"H</td>
<td>22"H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22"D</td>
<td>22"D</td>
<td>36"D</td>
<td>22"D</td>
<td>22"D</td>
<td></td>
</tr>
<tr>
<td>External Dim.</td>
<td>30.0"W</td>
<td>30.0"W</td>
<td>30.0"W</td>
<td>32.0"W</td>
<td>32.0"W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.5"H</td>
<td>19.5"H</td>
<td>19.5"H</td>
<td>29.5"H</td>
<td>29.5"H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.0"D</td>
<td>36.0"D</td>
<td>50.0"D</td>
<td>36.0"D</td>
<td>36.0"D</td>
<td></td>
</tr>
<tr>
<td>Temp. Resolution</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td>0.02°C</td>
<td></td>
</tr>
<tr>
<td>User Probe</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Battery Backup</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>IEEE-488</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RS232</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RS422</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Max. Rate of Change</td>
<td>.25°C/sec</td>
<td>.5°C/sec</td>
<td>.4°C/sec</td>
<td>.4°C/sec</td>
<td>.4°C/sec</td>
<td></td>
</tr>
<tr>
<td>CFM Vertical</td>
<td>300 ft³/min</td>
<td>600 ft³/min</td>
<td>600 ft³/min</td>
<td>600 ft³/min</td>
<td>600 ft³/min</td>
<td></td>
</tr>
<tr>
<td>110/115 V, 50/60 Hz Single Phase</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>208/230 Vac, 50/60 Hz Single Phase, 3/4 Wire</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Power Req.</td>
<td>3000 Watts</td>
<td>6000 Watts</td>
<td>6000 Watts</td>
<td>6000 Watts</td>
<td>6000 Watts</td>
<td></td>
</tr>
<tr>
<td>Net/Shipping Weight</td>
<td>98/115lbs</td>
<td>108/125lbs</td>
<td>138/175lbs</td>
<td>139/160lbs</td>
<td>165/185lbs</td>
<td></td>
</tr>
</tbody>
</table>

Environment, Operating
- Temperature: -94 to 608 F (-70 to 320 C) using Carbon Dioxide
- -299 to 608 F (-184 to 320 C) using Liquid Nitrogen
- Barometric Pressure: Ambient
- Humidity: 20 - 95% non-condensing

Environment, Shipping & Storage
- Temperature: 0 to 110 F (-18 to 43 C)
- Barometric Pressure: 5.54 to 30 in. Hg (0.184 to 1.003 atm)
- Vibration and Shock: encountered in normal shipping and handling with no degradation

Temperature Range (°C)
- LCO₂ cooling: -73 to 315° C for all of the above models
- LN₂ cooling: -184 to 315° C for all of the above models

SAFETY:
- Probe Malfunction: Open / Short Probe Detection
- Controller Malfunction: Hardware Watch Dog Timer
- Temperature Limits: Upper and Lower software limits and Bi-Metal Adjustable Thermostat or Limit Module with Adjustable Upper and Lower limits
SECTION 8. MAINTENANCE

The EC1x series of environmental chambers was designed to be as maintenance free as possible. To prolong your chamber's useful product life and to maintain it at its optimum working condition, Sun Systems recommends performing routine maintenance to the blower motor and expectorant filter on a semiannual basis. Refer to figures in section 1. Before using any cleaner or decontamination method except those recommended by the manufacturer, users should check with the manufacturer that the proposed method will not damage the equipment.

BLOWER MOTOR INSPECTION AND CLEANING
This procedure is to insure proper air flow is received by the blower motor for cooling.

STEP 1
Unplug chamber and position the chamber such that access is allowed to the rear of the chamber.

STEP 2
Clean the intake of the blower motor with a brush or vacuum / brush combination.

STEP 3
Reposition the chamber insuring that at least 2 inches of free air space exists between the rear of the blower motor and any other objects.

EXPECTORANT FILTER CLEANING
This procedure is necessary to insure proper working order of the cooling system.

STEP 1
Position the chamber such that access to the rear of the unit is possible.

STEP 2
Turn off the expectorant supply and remove the expectorant supply hose from the rear of the chamber. The hose connects to the filter assembly.

STEP 3
Remove the filter back section and then the filter itself.

STEP 4
Remove any contamination from the filter. If need be, tap the filter lightly as not to damage the filter.

STEP 5
Replace the filter and filter back body section

STEP 6
Reconnect the expectorant supply hose and turn on the expectorant supply. Check for leaks around the fittings.
SECTION 9. CHAMBER REPAIR

Note: The controller no longer incorporates a replaceable RAM Battery. Time and programming are held through a Super Cap and will remain in memory for approximately one week without power.

TEMPERATURE CONTROLLER SECTION REMOVAL AND REPLACEMENT

The temperature controller section is located on the right side of the chamber when viewed from the front. Follow the procedure outlined below for the removal and replacement of the controller section.

STEP 1
Remove all electrical power from the chamber, i.e., unplug the chamber from the line voltage. Turn off the expectorant supply and disconnect expectorant supply hose from the chamber. Insure that all of the components of the chamber have reached ambient temperature.

STEP 2
Position the chamber on its left side as viewed from the front. Remove the (4) or (5) 6-32 screws located on the exposed bottom of the chamber / control section intersection. Then remove the (4) or (5) 6-32 screws located on the top of the chamber / control section intersection.

STEP 3
Carefully separate the controller chassis from the chamber section being careful not to stress the wiring or probe connections.

STEP 4
If probes are to stay with controller then remove probes from chamber section. If probes are to stay with chamber then remove probe connectors from controller main PC board.

STEP 5
Disconnect the 26 pin flat cable from the I/O board that is mounted on the chamber section wall and also unplug the 2 wire power input cable from the I/O board.

REPLACEMENT

Reverse steps 1-5

HEATER ELEMENT REMOVAL AND REPLACEMENT

The heating elements are located behind the air baffle located inside the test chamber area. Follow the procedure below for removal and replacement.

STEP 1
Unplug the chamber from the line voltage. Turn off the expectorant supply and disconnect expectorant supply hose from the chamber. Insure that the heating elements and the interior of the chamber have had time to reach ambient temperature.

REMOVE AIR BAFFLE

STEP 2
Remove the (3) 6-32 screws and the (4) 8-32 screws located around the blower air intake on the rear wall of the interior of the test chamber
STEP 3
Remove the (2) 6-32 screws located on the ceiling of the test chamber and the air baffle.

REMOVE CHAMBER BACK PLATE

STEP 4
Remove the (14) or (18) #6 screws located on the perimeter of the chamber back plate and carefully pivot back plate away without stress to the line or fuse wiring.

HEATER ELEMENT REMOVAL

STEP 5
Carefully remove the fiberglass insulation from the heater mounting area. Remove the 6-32 nut and flat washer from each side of the heater element. Remove the wired ring terminals from the heater element mounts.

STEP 6
Remove the next 6-32 nut and beveled washer from both mounting sides.

Note: When reinstalling, always place the wide part of the bevel washer towards the ceramic insulator. Tighten the nut finger tight plus 3/4 of a turn or use 4 inch pounds of torque.

STEP 7
Stand to the side of the chamber. While supporting the two ceramic insulators from falling with one hand, reach inside and grasp the heater element and pull towards the front of the chamber.

REPLACEMENT

Defective heater elements are replaced with new ceramic insulators and new heater element. Reverse steps 2 thru 7 for installation

HEATER ELEMENT REPLACEMENT TABLE

The following is a guide to the number and type of heater elements used in each chamber. Chambers using both wattages, the upper elements on each side are 800w and lower are 600w.

<table>
<thead>
<tr>
<th>Model #</th>
<th>PN# 980201 (600 watt)</th>
<th>PN# 980205 (800 watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1A, EC10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC11A</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>EC1.3W</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC12</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EC13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC13HA, EC15HA</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EC16, EC16HA</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
COOLING MODULE ASSEMBLY REPLACEMENT

The cooling module consists of the nozzle, cool solenoid valve and associated plumbing necessary to deliver the expectorant to the test chamber.

STEP 1
Unplug the chamber from the line voltage. Turn off the expectorant supply and disconnect supply hose from the chamber. Insure that the components which carry the expectorant have had time to reach ambient temperature.

STEP 2
Follow the steps required to remove the controller chassis as described in "Temperature controller section removal".

SOLENOID VOLTAGE DISCONNECT

STEP 3
Locate and follow the two wires attached to the cool module and disconnect the two wires from the I/O board terminal block. Write down positions that the two wires are connected so that you reconnect the wires in the same fashion.

STEP 4
The cooling assembly has a 6" nozzle which protrudes into the test chamber area. Carefully remove the (5) #6 screws which hold the cooling assembly on the mounting plate and pull the module off the mounting plate in a perpendicular fashion.

REPLACEMENT

Reverse steps 2 thru 4

MECHANICAL FAIL-SAFE REMOVAL AND REPLACEMENT

This applies only to the mechanical fail-safe which is installed on all Models except the Model EC1.3W. If the electronic failsafe on the EC1.3W needs service contact Sun Electronic Systems. The fail-safe thermostat is located internally on the rear of the chamber. If replacement of the fail-safe is deemed necessary, follow the procedure below.

STEP 1
Unplug the chamber from the line voltage. Turn off the expectorant supply and disconnect expectorant supply hose from the chamber. Insure that the heating elements and the interior of the chamber have had time to reach ambient temperature.

REMOVE CHAMBER BACK PLATE

STEP 2
Remove the (14) or (18) #6 screws located on the perimeter of the chamber back plate and carefully pivot back plate away without stress to the line or fuse wiring.

STEP 3
Remove the fiberglass insulation which covers the fail-safe thermostat. Locate the thermostat and disconnect the (2) wires attached in line to the thermostat utilizing quick disconnect terminals.
STEP 4
Remove the (3) #6 screws which hold the thermostat to the rear wall of the test chamber and remove
the thermostat.

REPLACEMENT
Reverse steps 2 thru 4. Calibrate the thermostat under the procedures described in section 2 of this
manual.

BLOWER MOTOR REPLACEMENT
A noisy motor may indicate that the shaft is out of alignment or the bearings are bad. To
realign, by hand, gently move the motor up and down, left and right. If the noise continues, the motor
will need to be replaced. Perform the following procedure for removal and replacement.

STEP 1
Unplug the chamber from the line voltage. Turn off the expectorant supply and disconnect
expectorant supply hose from the chamber. Insure that the heating elements and the interior of the
chamber have had time to reach ambient temperature.

STEP 2
Follow the steps required to remove the temperature controller section as described earlier.

REMOVED AIR BАFFLE

STEP 3
Remove the (3) 6-32 screws and the (4) 8-32 screws located around the blower air intake on the rear
wall of the interior of the test chamber

STEP 4
Remove the (2) 6-32 screws located on the ceiling of the test chamber and the air baffle.

REMOVED CHAMBER BACK PLATE

STEP 5
Remove the (14) or (18) #6 screws located on the perimeter of the chamber back plate and carefully
pivot back plate away without stress to the line or fuse wiring.

STEP 6
From inside the test chamber, remove the blower wheel by loosening the set screw which holds the
wheel to the motor shaft.

STEP 7
Locate and follow the two wires connected to the blower motor back to the I/O board terminal block
located in the controller section and remove from (13) and (14). Feed wires thru access hole in
chamber side plate and let hang near blower motor.

STEP 8
Remove the (4) 8-32 screws which secure the blower motor adapting plate and remove the blower
motor in a perpendicular fashion.

REPLACEMENT
Reverse steps 2 thru 8
SECTION 10. Wiring Schematics, V\textsubscript{dc} Cooling

There are several ways to determine if your chamber incorporates a V\textsubscript{dc} cool valve:

1) A chamber information sheet can be found on page 2 of this manual. Verify that the serial number located on the ID tag at the rear of the chamber matches the serial number recorded on this information sheet, then check under “Coolant Type”. If the chamber was manufactured with V\textsubscript{dc} cooling, V\textsubscript{dc} will be check marked.

Note: This information sheet records the chamber setup at time of manufacture and assumes no later modifications have been made.

2) A V\textsubscript{dc} cool assembly will have two independent black wires running to the I/O board. They will NOT have a “bridge rectifier” connecting between them.

3) The I/O board for a V\textsubscript{dc} chamber will have part # 840078 REV D silkscreened in white on the left side of the board.

Note: This is the part number for just the bare board. The part number for ordering a replacement V\textsubscript{dc} I/O board can be found in Section 14.
120 V\textsubscript{ac} 3 Wire EC1A, EC10, EC12 with V\textsubscript{dc} Cool Valve
220 V_{ac} 3 Wire EC1A, EC10, EC12
with V_{dc} Cool Valve
220 V\textsubscript{ac} 3 Wire EC11A, EC13
with V\textsubscript{dc} Cool Valve
220 V_{ac} 3 Wire EC11 with V_{dc} Cool Valve
220 V_{ac} 3 Wire EC13HA, EC15HA, EC16, EC16HA

with V_{dc} Cool Valve
220 V_{ac} 4 Wire EC11A, EC11, EC13
with V_{dc} Cool Valve
SECTION 11. Wiring Schematics, V_{dc} Cooling and Limit Module

There are several ways to determine if your chamber incorporates a V_{dc} cool valve and Limit Module (Electronic Fail-Safe)

1) A chamber information sheet can be found on page 2 of this manual. Verify that the serial number located on the ID tag at the rear of the chamber matches the serial number recorded on this information sheet, then check under “Coolant Type”. If the chamber was manufactured with V_{dc} cooling, there will be a check marked beside V_{dc}. In addition, under “Fail-Safe Type” if the chamber was manufactured with a Limit Module, there will be a check marked beside Electronic.

Note: This information sheet records the chamber setup at time of manufacture and assumes no later modifications have been made.

2) The Limit Module is mounted on the chambers rear panel. It is a small box with an LCD and circuit breaker switch.

3) A V_{dc} cool assembly will have two independent black wires running to the I/O board. They will NOT have a “bridge rectifier” connecting between them.

4) The I/O board for a V_{dc} chamber will have part number 840078 silkscreened in white on the left side of the board.

Note: 840078 is the part number for just the bare board. The part number for ordering a replacement V_{dc} I/O board can be found in Section 13.
120 V_{ac} 3 Wire EC1A-LM, EC10-LM, EC12-LM

with V_{dc} Cool Valve
220 V\textsubscript{ac} 3 Wire EC1A-LM, EC10-LM, EC12-LM

with V\textsubscript{dc} Cool Valve
220 V_{ac} 3 Wire EC11A-LM, EC1.3W-LM, EC13-LM
with V_{dc} Cool Valve
220 V_{ac} 3 Wire EC11-LM
with V_{dc} Cool Valve

with V_{dc} Cool Valve
with V_{dc} Cool Valve
120 V_{ac} 3 Wire EC1A-LM-EMR, EC10-LM-EMR, EC12-LM-EMR
with V_{dc} Cool Valve

[Diagram of system wiring and components]
220 V_{ac} 3 Wire EC1A-LM-EMR, EC10-LM-EMR, EC12-LM-EMR with Vdc Cool Valve
SECTION 12. Wiring Schematics, V_{dc} Cooling and LM3

There are several ways to determine if your chamber incorporates a V_{dc} cool valve and LM3 (Electronic Fail-Safe)

1) A chamber information sheet can be found on page 2 of this manual. Verify that the serial number located on the ID tag at the rear of the chamber matches the serial number recorded on this information sheet, then check under “Coolant Type”. If the chamber was manufactured with V_{dc} cooling, there will be a check marked beside V_{dc}. In addition, under “Fail-Safe Type” if the chamber was manufactured with a LM3, there will be a check marked beside Electronic.

Note: This information sheet records the chamber setup at time of manufacture and assumes no later modifications have been made.

2) The LM3 is mounted on the chambers rear panel. It is a small box with a circuit breaker switch.

3) A V_{dc} cool assembly will have two independent black wires running to the I/O board. They will NOT have a “bridge rectifier” connecting between them.

4) The I/O board for a V_{dc} chamber will have part number 840078 silkscreened in white on the left side of the board.

Note: 840078 is the part number for just the bare board. The part number for ordering a replacement V_{dc} I/O board can be found in Section 13.
110 V_{ac} 3 Wire EC10-LM3, EC1A-LM3
with V_{dc} Cool Valve
220 Vdc 3 Wire EC13-LM3
with Vdc Cool Valve

SECTION 13. REPLACEMENT PARTS

Cool Assembly LN₂ V_{dc}, (LNDC1T) specify HI or LOW psi
Cool Assembly LCO₂ V_{dc}, 850 psi (CHDC1T)
Cool Assembly LCO₂ V_{dc}, 300 psi (CLDCWLNV)

Bimetal Fail-Safe, Normally Open (800008)
EC1A, EC11A, EC10, EC11 Blower Wheel (490002)
EC12, EC1.3W Blower Wheel (490003)
EC13 Blower Wheel (490010)
EC13HA, EC15HA, EC16, EC16HA Blower Wheel - Counter Clockwise (490009)
EC13HA, EC15HA, EC16, EC16HA Blower Wheel - Clockwise (490010)

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1A/11A</td>
<td>Type K Chamber Probe (980090G-18)</td>
</tr>
<tr>
<td>EC10/11</td>
<td>Type K Chamber Probe (980090G-18)</td>
</tr>
<tr>
<td>EC12/13/13HA</td>
<td>Type K Chamber Probe (980090G-22)</td>
</tr>
<tr>
<td>EC16/15HA/16HA</td>
<td>Type K Chamber Probe (980090G-23)</td>
</tr>
<tr>
<td>EC1.3W</td>
<td>Type K Chamber Probe (980090G-24.5)</td>
</tr>
<tr>
<td>Assembled</td>
<td>I/O Board for VDC Cool Valve (981046-xxx-x)*</td>
</tr>
<tr>
<td>Heater</td>
<td>25 AMP SSR (800003)</td>
</tr>
<tr>
<td>Expectorant Filter Assembly, LCO₂ (980240)</td>
<td></td>
</tr>
<tr>
<td>Expectorant Filter Assembly, LN₂ (980241)</td>
<td></td>
</tr>
<tr>
<td>600 watt</td>
<td>Heater Element (980201)</td>
</tr>
<tr>
<td>800 watt</td>
<td>Heater Element (980205)</td>
</tr>
<tr>
<td>Left Door Handle Assembly (980501)</td>
<td></td>
</tr>
<tr>
<td>Right Door Handle Assembly (980502)</td>
<td></td>
</tr>
<tr>
<td>Door Post</td>
<td>EC1A/10/11 (910031)</td>
</tr>
<tr>
<td>Door Post</td>
<td>EC12/13/13HA/1.3W/16/16HA (910005)</td>
</tr>
<tr>
<td>Door Gasket</td>
<td>EC0A/1A/11A (980518)</td>
</tr>
<tr>
<td>Door Gasket</td>
<td>EC01/10/11 (980512)</td>
</tr>
<tr>
<td>Door Gasket</td>
<td>EC02/03/12/13/13HA/15HA (980516)</td>
</tr>
<tr>
<td>Door Gasket</td>
<td>EC16/16HA (980519)</td>
</tr>
<tr>
<td>6 ft Stainless</td>
<td>LCO₂ Hose (without fittings) (570002)</td>
</tr>
<tr>
<td>LN₂ Hose, 6 ft (570020)</td>
<td></td>
</tr>
<tr>
<td>LCO₂ Tank Adaptor (980239)</td>
<td></td>
</tr>
<tr>
<td>2 pole Circuit Breaker (650010)</td>
<td></td>
</tr>
<tr>
<td>Extra User Manual (MANEC1X)**</td>
<td></td>
</tr>
</tbody>
</table>

* Requires Serial Number for exact replacement
** Can be found at www.sunelectronics.com/UserManuals.html
SECTION 14. ERROR MESSAGES

Error Messages Possible Cause/Recovery

b0 FORCE H&C OFF
Refer to the SDEF menu, "Auto SENSE IN0". This error occurs when the default setting of NO has been changed to YES enabling the "Auto SENSE IN0" but your chamber is not set up to detect logic on input bit 0 and shut off Heat and Cool.

COMMAND ERROR !
Syntax Error. Press ? ENTER, on the display will be a two line response. The first line will be a copy of the last command received. The second line will be a pointer (^) indicating the spot in the command where the error occurred.

COP INT?
The COP INT? error indicates a possible problem with the motherboard. Unplug the chamber and plug it back in. Turn the chamber on and issue the software reset command, STOPE9 ENTER, from the front panel. If this error message appears again, the motherboard and front panel will need to be sent in. Please call SUN for assistance and we can issue you an RMA number. Please provide the chamber serial number if possible.

DISPLAY SCREEN
If characters on the display screen are missing or scrambled, unplug the unit from the wall outlet, wait a few seconds, then plug the unit back in. This does a hardware reset and will usually correct the display problem.

ERROR = SET < LTL
This error means that the SET temperature is set lower than the LOWER TEMPERATURE LIMIT. (i.e. LTL = 0 and SET = -50) If this is the case, you need to adjust your Lower Temperature Limit (LTL). See LTL and SET command in Section 5 of this manual. The LTL is a software safety feature. If the SET value is set below the LTL you will get “ERROR = SET< LTL” and the unit will not go to that set point unless you lower the LTL below the SET value or increase the SET value to be above that of the LTL.

ERROR = SET > UTL
This error means that the SET temperature is set higher than the UPPER TEMPERATURE LIMIT (i.e. UTL = 100 and SET = 150). If this is the case, you need to adjust your Upper Temperature Limit (UTL). See UTL and SET command in Section 5 of this manual. The UTL is a software safety feature. If the SET value is set above the UTL you will get “ ERROR = SET > UTL” and the unit will not go to that set point unless you increase the UTL value above the SET value or decrease the SET value to be below that of the UTL.

FAILSAFE
Check to make sure the Circuit Breaker is in the “UP” position.

INVALID IN LP!
This error means you are in the EDIT mode where you enter a local program and the command you entered is not acceptable in Local Program.

LOW LINE VOLTAGE
If this error message occurs all the time, check the voltage at the outlet that the chamber is plugged into. For 110 V_{ac} chambers, line voltage should be at least 100 V_{ac}. For 220 V_{ac} chambers, line voltage should be at least 200 V_{ac}. If this message occurs only when cooling, it’s possible the transformer on
the I/O board needs to be replaced. Please call Sun for assistance and provide the chamber serial number if possible.

NOT IN ED, STORE
This error means that you are not in the EDIT mode and you are trying to issue a command that is only valid while in the EDIT mode. The EDIT mode is used to create a Local Program. See EDIT command and STORE command in Section 5.

PROBE #1 ERROR or PROBE #2 ERROR

NOTE: To avoid violation of chamber warranty, contact our Service Department before attempting to trouble shoot this error.

A probe error usually means that one of the probes is bad or there is a problem on the probe front end of the motherboard. To determine if the problem is with a probe or on the motherboard you will need to separate the controller from the chassis. See Section 9, "Temperature Controller Section Removal & Replacement" and Section 1, "Controller Section Separated" photograph. Next see Section 1, "Controller Section Main Board Cover Removed" photograph. The photograph shows the probes labeled Chamber Probe (which is probe 1) and User Probe (which is probe 2). Disconnect both green probe connectors from the motherboard by pulling slightly on the connector, making sure the probe wiring remains attached to its respective connector. Switch the two connectors and reattach them to the motherboard. The Chamber probe should now be in the User probe location and vice versa. If the controller display still gives you the same probe error (i.e. originally read Probe #1 Error, still reads Probe #1 Error), the problem is on the probe front end of the motherboard and the motherboard must come back to Sun for repair. If the controller display now reads a different probe error (i.e. now reads Probe #2 Error instead of Probe #1 Error), the probe itself is bad and needs to be replaced. Replacement probe part numbers can be found in Section 14 of this manual.

SRQ OVERFLOW
An SRQ Overflow message is just to inform you that an interrupt has not been serviced. The interrupts are enabled and disabled in the SINT menu. If you enable an interrupt and don't service the interrupt, you get an SRQ Overflow. The message can be ignored without causing any problems or you can do one of the following: disable the interrupts in the SINT menu or service the interrupt in your program.